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PREFACE

This book is ati outgrowth of lectures on the theory of probability

which the author has given at Stanford University for a number of

years. At first a short mimeographed text covering only the elementary

parts of the subject was used for the guidance of students. As time

went on and the scope of the course was gradually enlarged, the necessity

arose of putting into the hands of students a more elaborate exposition

of the most important parts of the theory of probability. Accordingly

a rather large manuscript was prepared for this purpose. The author

did not plan at first to publish it, but students and other persons who had

opportunity to peruse the manuscript were so persuasive that publication

was finally arranged.

The book is arranged in such a way that the first part of it, consisting

of Chapters I to XII inclusive, is accessible to a person without advanced

mathematical knowledge. Chapters VII and VIII are, perhaps, excep-

tions. The analysis in Chapter VII is rather involved and a better way
to arrive at the same results would be very desirable. At any rate, a

reader who does not have time or inclination to go through all the

intricacies of this analysis may skip it and retain only the final results,

found in Section 11. Chapter VIII, though dealing with interesting

and historically important problems, is not important in itself and may
without loss be omitted by readers. Chapters XIII to XVI incorporate

the results of modern investigations. Naturally they are more complex

and require more mature mathematical preparation.

Three appendices are added to the book. Of these the second is by
far the most important. It gives an outline of the famous Tshebysheff-

Markoff method of moments applied to the proof of the fundamental

theorem previously established by another method in Chapter XIV.
No one will dispute Newton's assertion: ^^In scientiis addiscendis

exempla magis prosunt quam praecepta." But especially is it so in the

theory of probability. Accordingly, not only are a large number of

illustrative problems discussed in the text, but at the end of each chapter

a selection of problems is added for the benefit of students. Some of

them are mere examples. Others are more difficult problems, or even

important theorems which did not find a place in the main text. In all

such cases sufficiently explicit indications of solution (or proofs) are given.



VI FREFACE

The book does not go into applications of probability to other sciences.

To present these applications adequately another volume of perhaps

larger size would be required.

No one is more aware than the author of the many imperfections in

the plan of this book and its execution. To present an entirely satis-

factory book on probability is, indeed, a difficult task. But even with

all these imperfections we hope that the book will prove useful, especially

since it contains much material not to be found in «)ther books on the

same subject in the English language.

J. V. Uspensky,
Stanford University,

September
j 1937^
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INTEODUCTION TO
MATHEMATICAL PEOBABILITY

INTRODUCTION

Quanto enim minus rationis terminis comprehendi posse

videhatuTj quae fortuita sunt atque incerta, tanto admira-

bilior ars censebitur, cui ista quoque subjacent .

—

Chr. Huygens,
De ratiociniis in ludo aleae.

1. It is always difficult to describe with adequate conciseness and
clarity the object of any particular science; its methods, problems, and

results are revealed only gradually. But if one must define the scope

of the theory of probability the answer may be this: The theory of

probability is a branch of applied mathematics dealing with the effects of

chance. Here we encounter the word chance/^ which is often used in

everyday language but with rather indefinite meaning. To make clearer

the idea conveyed by this word, we shall try first to clarify the opposite

idea expressed in the word necessity/’ Necessity may be logical or

physical. The statement “The sum of the angles in a triangle is equal

to two right angles” is a logical necessity, provided we assume the

axioms of Euclidean geometry; for in denying the conclusion of the

admitted premises, we violate the logical law of contradiction.

The following statements serve to illustrate the idea of physical

necessity:

A piece of iron falls down if not supported.

Water boils if heated to a sufficiently high temperature.

A die thrown on a board never stands on its edge.

The logical structure of all these statements is the same: When certain

conditions which may be termed “causes” are fulfilled, a definite effect

occurs of necessity. But the nature of this kind of necessity is different

from that of logical necessity. The latter, with our organization of

mind, appears absolute, while physical necessity is only a result of

extensive induction. We have never known an instance in which water,

heated to a high temperature, did not boil; or a piece of iron did not fall

down; or a die stood on its edge. For that reason we are led to believe

that in the preceding examples (and in innumerable similar instances)

the effect follows from its “cause” of necessity.

1



2 INTRODUCTION TO MATHEMATICAL PROBABILITY

Instead of the term physical necessity’.^ we may introduce the

abstract idea of ^^natural law.” Thus, it is a ^^natural law” that the

piece of iron left without support will fall down. Natural laws derived

from extensive experiments or observations may be called empirical

laws” to distinguish them from theoretical laws. In all exact sciences

which have reached a high degree of development, such as astronomy,

physics, and chemistry, scientists endeavor to build up an abstract and

simplified image of the infinitely complex physical world—an image

which can be described in mathematical terms. With the help of

hypotheses and some artificial concepts, it becomes possible to derive

mathematically certain laws which, when applied to the world of reality,

represent many natural phenomena with an amazing degree of accuracy.

It is true that in the development of the sciences it sometimes becomes

necessary to recast the previously accepted image of the physical world,

but it is remarkable that the fundamental theoretical laws even then

undergo but slight modification in substance or interpretation.

The chief endeavor of the exact sciences is the discovery of natural

laws, and their formulation is of the greatest importance to the promotion

of human knowledge in general and to the extension of our powers over

natural phenomena.

Are the events caused by natural laws absolutely certain? No,

but for all practical purposes they may be considered as certain. It is

possible that one or another of the natural laws may fail, but such

failure would constitute a real ^'miracle.” However, granted that the

possibility of miracles is consistent with the nature of scientific knowledge,

actually this possibility may be disregarded.

2. If the preceding explanations throw a faint light upon the concept

of necessity, it now remains to illuminate by comparison some charac-

teristic features inherent in the concept of chance.” To say that chance

is a denial of necessity is too vague a statement, but examples may help

us to understand it better.

If a die is thrown upon a board we are certain that one of the six faces

will turn up. But whether a particular jace will show depends on what
we call chance and cannot be predicted. Now, in the act of tossing a

die there are some conditions known to us: first, that it is nearly cubic

in shape; further, if it is a good die, its material is as nearly as possible

homogeneous. Besides these known conditions, there are other factors

influencing the motion of the die which are completely inaccessible to our

knowledge. First among them are the initial position and the impulse

imparted by the player's hand. These depend on an ^'act of will”—an
agent which may act without any recognizable motivation—and therefore

they are outside the domain of rational knowledge. Second, supposing

the initial conditions known, the complexity of the resulting motion
defies any possibility of foreseeing the final result.
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Another example: If equal numbers of white and black balls, which do

not differ in any respect*ex^t in color, are concealed in an urn, and we
draw one of them blindly, it is certain that its color will be either white

or black, but whether it will be black or white we cannot predict: that

depends on chance. In this example we again have a set of known
conditions: namely, that balls in equal numbers are white and black, and

that they are not distinguishable except in color. But the final result

depends on other conditions completely outside our knowledge. First,

we know nothing about the respective positions of the white and black

balls; second, the choice of one or the other depends on an act of will.

f

it is an observed fact that the numbers of marriages, divorces, births,

deaths, suicides, etc., per 1,000 of population, in a country with nearly

settled living conditions and during not too long a period of time, do not

remain constant, but oscillate within comparatively narrow limits. For

a given year it is impossible to predict what will be their numbers: that

depends on chance. For, besides some known conditions, such as the

level of prosperity, sanitation, and many other things, there are unnum-
bered factors completely outside our knowledge.

Many other examples of a similar kind can be cited to illustrate the

notion of chance. They all possess a common logical structure which

can be described as follows}*^ event A may materialize under certain

known or fixed” conditions, but not necessarily; for under the same fixed

conditions other events jB, C, D, . . . are also possible. The mate-

rialization of A depends also upon other factors completely outside our

control and knowledge. Consequently, whether A will materialize or

not under such circumstances cannot be foreseen; the materialization of

A is due to chance, or, to express it concisely, A is a contingent event.

3. The idea of necessity is closely related to that of certainty. Thus
it is certain” that everybody will die in the due course of time. In

the same way the idea of chance is related to that of 'probability or liheli-'

hood. In everyday language, the words “probability” and “probable”

are used with different shades of meaning. By saying, “Probably it will

rain tomorrow,” we mean that there are more signs indicating rainy

weather than fair for tomorrow. On the other hand, in the statement,

“There is little probability in the story he told us,” the word “proba-

bility” is used in the sense of credibility. But henceforth we shall use

the word as equivalent to the degree of credence which we may place

in the possibility that some contingent event may materialize. The
“degree of credence” implies an almost instinctive desire to compare
probabilities of different events, or facts. That such comparison is

possible one can gather from the followifig examples:

I live on the second floor and can reach the ground either by using

I
the stairway or by jumping from the window. Either way I might be

I injured, though not necessarily. How do the probabilities of being
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injured compare in the two cases? Everyone, no doubt, will say that

the probability of being injured by jumping from the window is greater’’

than' the probability of being injured while walking down the stairway.

Such universal agreement might be due either to personal experience or

merely to hearsay about similar experiences of other persons.

An urn contains an equal number of white and black balls that are

similar in all respects except color. One ball is drawn. It may be either

black or white. How do the probabilities of these two cases compare?

One almost instinctively answers: ^^They are equal.’^

Now, if there are 10 white balls and 1 black ball in the urn, what

about the probabilities of drawing a white or a black ball? Again one

would say without hesitation that the probability of drawing a white ball

is greater than that of drawing a black ball. ^
-t<rhus, probability appears to be something which admits of comparid

sons in magnitude, but so far only in the same way as in the intensity of

pain produced by piercing the skin with needles, t—
But it is a noteworthy observation that men instinctively try to

characterize probabilities numerically in a naive and unscientific manner.

We read regularly in the sporting sections of newspapers, predictions

that in a coming race a certain horse has two chances against one to

win over another horse, or that the chances of two football teams are as

10 to 7, etc. No doubt experts do know much about the respective

horses and their riders, or the comparative strengths of two competing

football teams, but their numerical estimates of chances have no other

merit than to show the human tendency to assign numerical values to

probabilities which most likely cannot be expressed in numbers.
It is possible that a man endowed with good common sense and ripe

judgment can weigh all available evidence in order to compare the
probabilities of the various possible outcomes and to direct his actions

accordingly so as to secure profit for himself or for society. But precise

conclusions can never be attained unless we find a satisfactory w^ay to

represent or to measure probabilities by numbers, at least in some cases.

4. As in other fields of knowledge, in attempting to measure proba-
bilities by numbers, we encounter difficulties that cannot be avoided
except by making certain ideal assumptions and agreements. In
geometry (we speak of applied and not of abstract geometry), before
explaining how lengths of rectilinear segments can be measured, we must
first agree on criteria of equality of two segments. Similarly, in dealing
with probability, the first step is to answer the question: When may two
contingent events be considered as equally probable or, to use a more
common expression, equally likely? From the statements of Jacob
Bernoulli, one of the founders of the mathematical theory of probability,
one can infer the following criterion of equal probability;
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Two contingent events are considered as equally probable if, after taking

consMerdtion all relevant evidencey cannot be expected in
preference to the other. ^

Certainly there is some obscurity in this criterion, but it is hardly
possible to substitute any better one. To be perfectly honest, we must
admit that there is an unavoidable obscurity in the principles of all the
sciences in which mathematical analysis is applied to reality.

The application of Bernoulli’s criterion to particular cases is beset

with dfficulties and requires good common sense and keen judgment.
There is much truth in Laplace’s statement: ^^La theorie des probabilites

n’est au fond que le bon sens reduit au calcuL”

To elucidate the nature of these difiBLculties, let us consider an urn
filled with white and black balls, but in unknown proportion. The only

evidence we have, namely, that there are both white and black balls in

the urn, in this case appears insufficient for any conclusion about the

respective probabilities of drawing a white or a black ball. We instinc-

tively think of the numbers of the two kinds of balls, and, being in

ignorance on this point, we are inclined to suspend judgment. But if we
know that white and black balls are equal in number and distributed

without any sort of regularity, this knowledge appears sufficient to

assume the equality of the probabilities of drawing a white or a black

ball. It is possible that, perhaps unconsciously, we are influenced by the

commonly known fact that if we repeatedly draw a ball out of the urn

many times, returning the ball each time before drawing again, the white

and the black balls appear in nearly equal numbers.

If an urn contains a certain number of identical balls distinguished

from one another by some characteristic signs, for example, by the

numbers 1, 2, 3, ...
,
the knowledge that the balls are identical and

are distributed without regularity suffices in this case to cause us to

conclude that the probabilities for drawing any of the balls should be

considered as equal. Again, in so readily assuming this conclusion we
may be influenced by the fact empirically observed (by ourselves or by
others) that in a long series of drawings, with balls being restored to

the urn after each withdrawal, the balls appear with nearly the same

frequency.

An ordinary die is tossed. Should we consider the possible numbers

of points 1, 2, 3, 4, 5, 6 as equally probable? To pronounce any judg-

ment, we must know something about the die. If it is known that the

die has a regular cubic shape and that its material is homogeneous, we
readily agree on the equal probabilities of all the numbers of points

1, 2, 3, 4, 5, 6. And this a priori conclusion, based on Bernoulli’s cri-

terion, agrees with the observed fact that each number of points does

appear nearly an equal number of times in a long series of throws, if the
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die is a good one. However, if we only know that the die has a regular

shape, but not whether or not it is loaded, it is only sensible to suspend

judgment.

These examples vshow that before trying to apply Bernoulli’s criterion,

we must have at our disposal some evidence the amount of which cannot

be determined by any general rules. It may be also that the reason a

priori must be supplemented by some empirical evidence. In some

cases, lacking sufficient grounds to assert equal probabilities for two

events, we may assume them as a hypothesis, to be kept until for some

reason we are forced to abandon it.

6. Besides the ticklish question: When are we entitled to consider

events as equally probable? there is another fundamental assumption

required to make possible the measurement of probabilities by numbers.

Events ai, a2 ,
. . . a» form an exhaustive set of possibilities under

certain fixed conditions S, if at least one of them must necessarily mate-

rialize. They are mutually exclusive if any two of them cannot material-

ize simultaneously. The fundamental assumption referred to consists in

the pos^sibility of subdividing results consistent with the conditions S
into a number of exhaustive, mutually exclusive, and equally likely

events, or cases (as they are commonly called)

:

This being granted, the probability of any one of these cases is assumed

to be l/n.

An event A may materialize in several mutually exclusive particular

forms: a, jd, . . . that is, if A occurs, then one and only one of the

events a, jd, . . , X occurs also, and conversely the occurrence of one of

these events necessitates the occurrence of A, Thus, if A consists in

drawing an ace from a deck of cards, A may materialize in four mutually

exclusive forms: as an ace of hearts, diamonds, clubs, or spades.

Let an event A be represented by its particular forms ai, , , , a^,

which together with other events a,n+i, 0,^+2,
an constitute an

exhaustive set of mutually exclusive and equally likely cases consistentwith

the conditions S. Events ai,a2,
. . . a^arecalled^' cases favorable to A.”

Definition of Mathematical Probability. //, consistent with conditions

S, there are n exhaustive, mutually exclusive, and equally likely cases, and
m of them are favorable to an event A, then the mathemaiical 'probability of

A is defined as the ratio m/n.

In drawing a card from a full deck there are 52 and no more mutually
exclusive and equally likely cases; 4 of them are favorable for drawing an
ace; hence the probability of drawing an ace*is M 2 = Ma*

From an urn containing 10 white, 20 black, and 5 red balls, one ball is

drawn. Here, distinguishing individual balls, we have 35 equally likely
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cases. Among them there are 10, 20, and 5 cases, favorable respectively

to a white, a black, or a red ball. Hence the probabilities of drawing a
white, a black, or a red ball are, respectively, and >7.

In the first example, instead of 52 cases, we may consider only 13

cases according to the denominations of the cards. These cases being

regarded as equally likely, there is only one of them favorable to an
ace. The probability of drawing an ace is 3^3. This observation makes
it clear that the subdivision of all possible results into equally likely

cases can be done in various ways. To avoid contradictory estimations

of the same probability we must always observe the following rules:

Two events are equally likely if each of them can be represented by
equal numbers of equally likely forms.

Two events are not equally likely if they are represented by unequal
numbers of equally likely forms.

Thus, if two equally likely events are each represented by different

numbers of their respective forms, then the latter cannot be considered as

equally likely.

Each card is characterized by its denomination and the suit to which

it belongs. Noting denominations, we distinguish 13 cases, but each

of these is represented by 4 new cases according to the suit to which the

card belongs. Altogether we have, then, 52 cases recognized as equally

likely; hence, the above-mentioned 13 cases should be considered as

equally likely.

In connection with the definition of mathematical probability,

mention should be made of an important principle not always explicitly

stated. If

(Xlf Cl2} • » • • » ‘

are all mutually exclusive and equally likely cases consistent with

certain conditions, and the indication of the occurrence of an event B
makes cases 61, ^2, . * . 5^, impossible, cases ai, a2, . . . still should be

considered as equally likely. To illustrate this principle, consider an

urn with six tickets bearing numbers 1, 2, ... 6. Two tickets are

drawn in succession. If nothing is known about the number of the first

ticket, we still have six possibilities for the number of the second ticket,

which we agree to consider as equally likely. But as soon as the number

of the first ticket becomes known, then there are only five cases left

concerning the number of the second ticket. According to the above

principle we must consider these five’ cases as equally likely.

Probability as defined above is represented by a number contained

between 0 and 1. In the extreme case in which the probability is 0, it

indicates the impossibility of an event. On the contrary, in the other

extreme case in which the probability is 1, the event is certain. When
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the probability is expressed by a number very near to 1, it means that

the overwhelming majority of cases are favorable to the event. On the

contrary, a probability near to 0 shows that the proportion of favorable

cases is small.

From our experience we know that events with a small probabil-

ity seldom happen. For instance, if the probability of an event is

1/1,000,000, the situation may be likened to the drawing of a white ball

from an urn containing 999,999 black balls and a single white one.

This white ball is practically lost among the majority of black balls, and

for all practical purposes we may consider its extraction impossible.

Similarly, the probability 999,999/1,000,000 may be considered, from a

practical standpoint, as an indication of certainty. What limit for

smallness of probability is to be set as an indication of practical impos-

sibility? Evidently there is no general answer to this question. Every-

thing depends on the risk we can face if, contrary to expectation, an

event with a small probability should occur. Hence, the main problem

of the theory of probability consists in finding cases in which the proba-

bility is very small or very near to 1. Instead of saying, ^^The proba-

bility is very near to we shall say, great probability,^^ although,

of course, the probability can never exceed 1.

7. The definition of mathematical probability in Sec. 5 is essentially

the classical definition proposed by Jacob Bernoulli and adopted by

Laplace and almost all the important contributors to the theory of

probability. But, since the middle of the nineteenth century (Cournot,

John Stuart Mill, Venn), and especially in our days, the classical definition

has been severely criticized. Several attempts have been made to rear

up the edifice of the mathematical theory of probability on quite a

different definition of mathematical probability. It does not enter into

our plan to criticize these new definitions, but, in the opinion of the

author, many of them are self-contradictory. Modern attempts to build

up the theory of probability as an axiomatic science may be interesting

in themselves as mental exercises; but from the standpoint of applica-

tions the purely axiomatic science of probability would have no more
value than, for example, would the axiomatic theory of elasticity.

The most serious objection to the classical definition is that it can

be used only in very simple and comparatively unimportant cases like

games of chance. This objection, stressed by von Mises, is in reality

not a new one. It is one of the objections Leibnitz made against Jacob
Bernoulli's views concerning the possibility of applications of the theory

of probability to various important fields of human endeavor and not

merely to games of chance.

It is certainly true that the classical definition cannot be directly

applied in many important cases.
. But is it the fault of the definition
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or is it rather due to our ignorance of the innermost mechanisms which,

apart from chance, contribute to the materialization or nonmaterializa-

tion of contingent events? It seems that this is what Jacob Bernoulli

meant in his reply to Leibnitz:

Objiciunt primo, aliam esse rationem calculorum, aliam morborum aut muta-
tionum aeris; illorum numerum determinatum esse, horum indeterminatum et

vagum. Ad quod respondeo, utrumque respectu cognitionis nostrae aequi poni

incertum et indeterminatum; sed quicquam in se et sua natura tale esse, non
magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore naturae

creatum esse et non creatum: quaecumque enim Deus fecit, eo ipso dum fecit,

etiam determinavit.^

8. A brilliant example of how the profound study of a subject finally

makes it possible to apply the classical definition of mathematical

probability is afforded in the fundamental laws of genetics (a science of

comparatively recent origin, whose importance no one can deny), dis-

covered by the Augustinian monk, Gregor Mendel (1822-1884). During
eight years MendeP conducted experimental work in crossing different

varieties of the common pea plant with the purpose of investigating how
pairs of contrasting characters were inherited. For the pea plant there

are several pairs of such contrasting characters : round or wrinkled seeds,

tallness or dwarfness, yellow or green pod color, etc. Let us concentrate

our attention on a definite pair of contrasting characters, yellow or green

pod color. Peas with green pod color always breed true. Also some
peas with yellow color always breed true, while still others produce both

varieties. True breeding pea plants constitute two pure races : A with

yellow pod color and B with green pod color, while plants with yellow

pods not breeding true constitute a hybrid race, C. Crossing plants of

the race A with those of the race B and planting the seeds, Mendel
obtained a first generation Fi of hybrids. Letting plants of the first

generation self-fertilize and again planting their seeds to produce the

second generation F2 ,
Mendel found that in this generation there were

428 yellow pod plants and 152 green pod plants in the ratio 2.82:1.

In regard to other contrasting characters the ratio of approximately 3 :

1

was observed in all cases. Later experimental work only confirmed

MendeFs results. Thus, combined experiments of Correns, Tschermak,

and others gave among 195,477 individuals of F2 ,
146,802 yellow pod

plants and 48,675 green pod plants, in the ratio 3.016: 1.

^To understand the beginning of this statement see the translation from ^‘Ars

conjectandi^' in Chap. VI, p. 105.

2 Mendel’s results were published in 1865, but passed completely unnoticed until

in about 1900 the same facts were rediscovered by DeVries, Correns, and Tschermak.
Modern genetics dates from about this time.
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Mendel not only discovered such remarkable regularities, but also

suggested a rational explanation of the observed ratio 3:1, which with

some modifications is accepted even today. Bodies of plants and

animals are built up of enormous numbers of cells, among which the

reproductive cells, or gametes, differ from the remaining somatic^’

cells in some important qualities. Cells are not homogeneous, but

possess a definite structure. In somatic cells there are found bodies,

called chromosomes, whose number is even and the same for the same

species. Exactly half of this number of chromosomes is found in repro-

ductive cells. Chromosomes are supposed to be seats of hypothetical

^^genes,^^ which are considered as bearers of various heritable characters.

A chromosome of one pure race A bearing a character a differs from the

homologous chromosome of another pure race B bearing a contrasting

character h in that they contain genes of different kinds. Since characters

a and h are borne by definite chromosomes, the situation in regard to the

two characters a and h is exactly the same as if gametes of both races

contained just one chromosome. Let us represent them symbolically by

O and In the act of fertilization a pair of paternal and maternal

gametes conjugate and form a zygote, which by division and growth

produces all cells of the filial generation. Certain of these cells become
the germ cells and are set apart for the formation, by a complicated

process, of gametes, one half of which contain the chromosome of the

paternal type and the other half that of the maternal type.

According to this theory, in crossing two individuals belonging to

races A and B, zygotes of the first generation Fi will be of the type

O-— and will produce gametes, in equal numbers, of the types 0,0.
Now if two individuals of (hybrids) are crossed (or one individual

self-fertilized as in the cases of some plants), one paternal gamete con-

jugates with one maternal, and for the resulting zygote there are four

possibilities:

0—0 0—0 0-0 0—0
These possibilities may be considered as equally probable, whence
the probabilities for an individual of the generation F2 to belong respec-

tively to the races A, £, C are M- Similarly, one easily finds that

in crossing an individual of the race A with one of the hybrid race C,

the probabilities of the offspring belonging to A or (7 are both equal to

It is easy now to offer a rational explanation of the Mendelian ratio

3 :1. In the case of pea plants, individuals of the race A and hybrids

are not distinguishable in regard to the color of their pods. Hence the

probability of the offspring of a hybrid plant having yellow pods is

while for the offspring to have green pods the probability is K.
When the generation i^2 consists of a great many individuals, the theory
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of probability shows that the ratio of the number of yellow pod plants to

the number of green pod plants is not likely to differ much from the ratio

3:1. In crossing plants of the race A with hybrids, the offspring, if

numerous, will contain plants of race A or C, respectively, in a proportion

which is not likely to differ much from 1:1. And this conclusion was
experimentally verified by Mendel himself.

9. If in the case of the Mendelian laws the profound study of the

mechanism of heredity together with hypothetical assumptions of the

kind used in physics, chemistry, etc., paved the way for a rational

explanation of observed phenomena on the basis of the theory of proba-

bility, in many other important instances we are still unable to reach the

same degree of scientific understanding. Stability of statistical ratios

observed in many cases suggests the idea that they should be explained

on the basis of probability. For instance, it has been observed that

the ratio of human male and female births is nearly 51:50 for large

samples, and this is largely independent of climatic conditions, racial

differences, living conditions in different countries, etc. Although the

factors determining sex are known, yet some complications not suflS.-

ciently cleared up prevent estimation of probabilities of male and female

births.

In all instances of the pronounced stability of statistical ratios we
may believe that some day a way will be found to estimate probabilities

in such cases. Therefore many applications of the theory of probability

to important problems of other sciences are based on belief in the existence

of the probabilities with which we are concerned. In other cases in

which the theory of probability is used, we may have grave doubts

as to whether this science is applied legitimately. The fact that many
applications of probability are based on belief or faith should not dis-

courage us; for it is better to do something, though it may be not quite

reliable, than nothing. Only we must not be overconfident about the

conclusions reached under such circumstances.

After all, is not faith at the bottom of all scientific knowledge?

Physicists speak of electrons, which never have been seen and are known
only through their visible manifestations. Electrons are postulated

just to coordinate into a coherent whole a large variety of observed

phenomena. Is not this faith? It must be, for according to Paul

(Hebrews,* 11 : 1), “Faith is the substance of things hoped for, the evidence

of things not seen.”

10. In concluding this introduction it remains to give a short account

of the history of the theory of probability. Although ancient philoso-

phers discussed at length the necessity and contingency of things, it

seems that mathematical treatment of probability was not known to the

ancients. Apart from casual remarks of Galileo concerning the correct
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evaluation of chances in a game of dice, we find the true origin of the

science of probability in the correspondence between two great men of

the seventeenth century, Pascal (1623-1662) and Fermat (1601-1665).

A French nobleman, Chevalier de M4re, a man of ability and great

experience in gambling, asked Pascal to explain some seeming contradic-

tions between his theoretical reasoning and the observations gathered

from gambling. Pascal solved this difficulty and attacked another

problem proposed to him by de Mere. On hearing from Pascal about

these problems, Fermat became interested in them, and in their private

correspondence these two great men laid the first foundations of the

science of probability. Bertrand^s statement, “Les grands noms de

Pascal et de Fermat decorent le berceau de cette science^^ cannot be

disputed-

Huygens (1629-1695), a great Dutch scientist, became acquainted

with the contents of this correspondence and, spurred on by the new
ideas, published in 1654 a first book on probability, ^^De ratiociniis in

ludo aleae,^^ in which many interesting and rather difficult problems on

probabilities in games of chance were solved. To him we owe the

concept of ^^mathematical expectation^' so important in the modern
theory of probability.

Jacob Bernoulli (1654-1705) meditated on the subject of probability

for about twenty years and prepared his great book, Ars conjectandi,"

which, however, was not published until eight years after his death in

1713, by his nephew, Nicholas Bernoulli. Bernoulli envisaged the

subject from the most general point of view, and clearly foresaw a whole

field of applications of the theory of probability outside of the narrow

circle of problems relating to games of chance. To him is due the

discovery of one of the most important theorems known as ^^Bernoulli's

theorem."

The next great successor to Bernoulli is Abraham de Moivre (1667-

1754), whose most important work on probability, ^^The Doctrine of

Chances," was first published in 1718 and twice reprinted in 1738 and
in 1756. De Moivre does not contribute much to the principles, but this

work is justly renowned for new and powerful methods for the solution

of more difficult problems. Many important results, ordinarily attrib-

uted to Laplace and Poisson, can be found in de Moivre's book.

Laplace (1749-1827), whose contributions to celestial mechanics
assured him everlasting fame in the history of astronomy, was very
much interested in the theory of probability from the very beginning of

his scientific career. After writing several important memoirs on the

subject, he finally published, in 1812, his great work ''Thdorie analytique
des probabilit^s," accompanied by a no less known popular exposition,

“Essai philosophique sur les probabilitds," destined for the general

educated public. Laplace^s work, on account of the multitude of new
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ideaS; new analytic methods, and new results, in all fairness should be
regarded as one of the most outstanding contributions to mathematical
literature. It exercised a great influence on later writers on probability

in Europe, whose work chiefly consisted in elucidation and development
of topics contained in Laplace’s book.

Thus in European countries further development of the theory of

probability was somewhat retarded. But the subject took on important
developments in the works of Russian mathematicians: Tshebysheff

(1821-1894) and his former students, A. Markoff (1856-1922) and A.

Liapounoff (1858-1918). Castelnuovo in his fine book ^^Calcolo delle

probabilita” rightly regards the contributions to the theory of probability

due to Russian mathematicians as the most important since the time of

Laplace.

At the present time interest in the theory of probability is revived

everyv^here, but again the most outstanding recent contributions have

been made in Russia, chiefly by three prominent mathematicians: S.

Bernstein, A. Khintchine, and A. Kolmogoroff.

In closing this introduction it seems proper to quote the closing

words of the “Essai philosophique sur les probabilit^s”

:

On voit par cet Essai, que la th^orie des probabilit^s est au fond, que le bon
sens r6duit au calcul: elle fait appr4cier avec exactitude, ce que les dsprits justes

sentent par une sorte dInstinct, sans quTs puissent souvent s’en rendre compte.

Bile ne laisse rien diarbitraire dans le choix des opinions et des partis a prendre,

toutes les fois que Ton peut, 4 son moyen, determiner le choix le plus avantageux.

Par la, elle devient le supplement le plus heureux, h Tignorance et a la faiblesse

de resprit humain. Si Ton considere les methodes analytiques auxquelles cette

theorie a donne naissance, la verite des principes qui lui servent de base, la

logique fine et delicate qu’ exige leur emploi dans la solution des problemes, les

etablissements d^utilite pubhque qui s’appuient sur elle, et Textension qu’elie a

regue et qu^elle peut re9evoir encore, par son application aux questions les plus

importantes de la Philosophic naturelle et des sciences morales; si Ton observe

ensuite, que dans les choses m^mes qui ne peuvent etre soumise au calcul, elle

donne les apergus les plus stirs qui puissent nous guider dans nos jugements,

et qu'elle apprend k se garantir des illusions qui souvent nous 4garent,* on verra

qufll n'est point de science plus digne de nos meditations.
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CHAPTER I

COMPUTATION OF PROBABILITIES BY DIRECT
ENUMERATION OF CASES

1. The probability of an event can be found by direct application

of the definition when it is possible to make a complete enumeration of

all equally likely cases, as well as of those favorable to that event. Here

we shall consider a few problems, beginning with the simplest, to illustrate

this direct method of evaluating probabilities.

Problem 1. Two dice are thrown. What is the probability of

obtaining a total of 7 or 8 points?

Solution. Suppose we distinguish the dice by the numbers 1 and 2.

There are 6 possible cases as to the number of points on the first die;

and each of these cases can be accompanied by any of the 6 possible

numbers of points on the second die. Hence, we can distinguish alto-

gether 6 X 6 = 36 different cases. Provided the dice are ideally regular

in shape and perfectly homogeneous, we have good reason to consider

these 36 cases as equally likely, and we shall so consider them.

Next, let us find out how many cases are favorable to the total of

7 pcfiats. This may happen only in the following ways:

First Die

1

2

3

4

5

6

Second Die

6

5

4

3

2

1

Likewise, for 8 points:

First Die

2

3

4

5

6

Second Die

6

5

4

3

2

That is, out of the total number of 36 cases there are 6 cases favorable

to 7 points and 5 cases favorable to 8 points; hence, the probability of

obtaining 7 points is and the probability of obtaining 8 points is

Problem 2. A coin is tossed three times in succession. What
is the probability of obtaining 2 heads? What is the probability of

obtaining tails at least once?

14
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Solution, In the first throw there are two possible cases: heads or

tails. And if the coin is unbiased (which we assume is true) these two
cases may be considered as equally likely. In two throws there are

2X2 = 4 cases; namely, both of the two possible cases in the first toss

can combine with both of the possible cases in the second. Similarly,

in three throws the number of cases will be 2 X 2 X 2 = 8. To find

the number of cases favorable to obtaining 2 heads, we must consider

that this can happen only in three ways:

Heads Heads Tails

Heads Tails Heads
Tails Heads Heads

The number of favorable cases being 3, the probability of obtaining

two heads is

^To answer the second part of the question, we observe that there is

only one case when tails does not turn up. Therefore, the number of

cases favorable to obtaining tails at least once is 8 ~ 1 = 7, so that

the required probability is

3, Problem 3. Two cards are drawn from a deck of well-shuffied

cards. What is the probability that both the extracted cards are

aces?

Solution. Since there are 52 cards in the deck, there are 52 ways

of extracting the first card. After the first card has been withdrawn,

the second extracted card may be one of the remaining 51 cards. There-

fore, the total number of ways to draw two cards is 52 X 51. All these

cases may be considered as equally likely.

To find the number of cases favorable to drawing aces, we observe

that there are 4 aces; therefore, there are 4 ways to get the first ace.

After it has been extracted, there are 3 ways to get a second ace. Hence,

the total number of ways to draw 2 aces, is 4 X 3, and the required

probability is

:

^ X 3 ^ 1
J:_. CK

52 X 51 13 X 17 221

Problem 4. Two cards are drawn from a full pack, the first card

being returned to the pack before the second is taken. What is the

probability that both the extracted cards belong to a specified suit?

Solution. There are 52 ways of getting the first card. For the

second drawing, there are also 52 ways, because by returning the first

extracted card to the pack, the original number was restored. Under
such circumstances, the total number of ways to extract two cards is

52 X 52. Now, because there are 13 cards in a suit, the number of

cases favorable to obtaining two cards of a specified suit is 13 X 13.
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Therefore, the required probability is given by:

13 X 13 __ 1 X 1 _ 1

52 X 52 4 X 4 16*

4. Problem 6. An urn contains 3 white and 5 black balls. One
ball is drawn. What is the probability that it is black?

Solution. The total number of balls is 8. To distinguish them, we
may imagine that they are numbered. As to the number on the ball

drawn, there are 8 possible cases that may reasonably be considered as

equally likely. Obviously, there are 5 cases favorable to the black color

of the ball drawn. Therefore, the required probability is

By a slight modification of the last problem, we come to the following

interesting situation

:

Problem 6. The contents of the urn are the same as in the foregoing

problem. But this time we suppose that one ball is drawn, and, its color

unnoted, laid aside. Then another ball is drawn, and we are required to

find the probability that it is black or white.

Solution. Suppose again that the balls are numbered, so that the

white balls bear numbers 1, 2, and 3; and the black balls bear numbers

4, 5, 6, 7, '8. Obviously, there are 8 ways to get the first ball, and what-

ever it is, there remain only 7 ways to get the second ball. The total

number of equally likely cases is 8 X 7 = 56.

It is a little more difficult to find the number of cases favorable to

extracting a white or black ball in the second drawing. Suppose we are

interested in the white color of the second ball. If the first ball drawn is

a white one, it may bear one of the numbers 1 to 3. Whatever this

number is, the second ball, if it is white, can bear only the two remaining

numbers. Therefore, under the assumption that the first ball is a white

one, the number of favorable cases is 3 X 2 = 6. Again, supposing that

the first ball drawn is black, we have 5 possibilities as to its number, and,

corresponding to any one of these possibilities, there are 3 possibilities

as to the number of the white ball to be taken in the second drawing,

so that the number of favorable cases now is 5 X 3 = 15. The number
of all favorable cases is 6 + 15 = 21. The required probability for

the white ball is the same way, we should find

that the probability for the black ball is It is remarkable that

these two probabilities are the same as if only a single ball had been

drawn.

The situation is quite different if we know the color of the first ball.

Suppose, for instance, that it is white. The total number of equally

likely cases will then be 3 X 7 = 21; and the number of cases favorable

to getting apother white ball is 3 X 2 = 6, so that the probability in

this case' is
;

^
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This last example shows clearly how much probability depends upon
a given or known set of conditions.

6. Problem 7. Three boxes; identical in appearance^ each have two
drawers. The first box contains a gold coin in each drawer; the second

contains a silver coin in each drawer; but the third contains a gold coin

in one drawer and a silver coin in the other, (a) A box is chosen at ran-

dom. What is the probability that it contains coins of different metals?

(b) A box is chosen, one of its drawers opened, and a gold coin found.

What is the probability that the other drawer contains a silver coin?

Solution, (a) Since nothing outwardly distinguishes one box from

the other, we may recognize three equally likely cases, and among them
is only one case of a box with coins of different metals. Therefore, we
estimate the required probability as M-
^(b) As to the second question, one is tempted to reason as follows:

The fact that a gold coin was found in one drawer leaves only two

possibilities as to the content of the other drawer; namely, that the coin

in it is either gold or silver. Hence, the probability of a silver coin in

the second drawer seems to be But this reasoning is fallacious.

It is true that, when the gold coin is found in one drawer, there are only

two possibilities left as to the content of the other drawer; but these

possibilities cannot be considered as equally likely. To see this point

clearly, let us distinguish the drawers of the first box by the numbers 1

and 2; those of the second box by the numbers 3 and 4; finally, in the

third box, 5 will distinguish the drawer containing the silver coin, while

6 will represent the drawer with the gold coin.

Instead of three equally likely cases:

box 1, box 2, box 3

we now have six cases:

drawers 1, 2; drawers 3, 4; drawers 5, 6,

which, with reference to the fundamental assumptions, must be con-

sidered as equally likely. If nothing were known about the contents

of the drawer which has been opened, the number of this drawer might be

either 1, 2, 3, 4, 5, or 6. But as soon as the gold coin is discovered in it,

cases 3, 4, and 5 become impossible, and there remain three equally likely

assumptions as to the number of the opened drawer: it may be either 1 or

2 or 6. That leaves three cases, and in only one of them, namely, in

case 6, will the other drawer contain a silver coin. Thus the answer

to the second question (6) is 3^.

6. In the preceding problems the enumeration of cases did not

present any difficulty. We are now going to discuss affew problems in

whi^^tEs enumeration is not so obvious but can be greatly simplified



18 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. I

by the use of well-known formulas for the number of permutations,

arrangements, and combinations.

Let m distinct objects be represented by the letters a, 6, c, , . . L

Using all these objects, we can place them in different orders and form

permutations.^^ For instance, if there are only three letters, a, 6, and c,

all the possible permutations are: abc, ac6, bac, hca^ cab, cha,—6 different

permutations out of 3 letters. In general, the number of permutations

Pm of m objects is expressed by

== 1 * 2 • 3 ' ' ' m= ml

If n objects are taken out of the total number of m objects to form

groups, attention being paid to the order of objects in each group, then

these groups are called arrangements.^^ For instance, by taking two

letters out of the four letters a, 6, c, d, we can form the following 12

arrangements:

ah ha ca da

ac he cb dh

ad hd cd dc

Denoting by the symbol the number of arrangements of m
objects taken n at a time, the following formula holds:

A^ = m(m — l){m — 2) {m — n + 1).

Again, if we form groups of n objects taken out of the total number of

m objects, this time paying no attention to the order of objects in the

group, we form combinations.^^ For instance, following are the

different combinations out of 5 objects taken 3 at a time:

ahe abd ahe acd ace

ade bed hce hde ede

In general, the number of combinations out of m objects taken n
at a time, which is usually denoted by the symbol C”, is given by

_ m(m ~ l)(m — 2)
• •

• (m — n + 1)

1 •2*3 — • n

It is useful to recall that the same expression may itlso be exhibited

as follows:

ml
n!(m — n)!

whence, by substituting m — n instead of n, the useful formula

Cl =

can be derived.
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7. After these preliminary remarks, we can turn to the problems in

which the foregoing formulas will often be used.

Problem 8. An urn contains a white balls and h black balls. If

a + ^ balls are drawn from this urn, find the probability that among
them there will be exactly a white and ^ black balls.

Solution. If we do not distinguish the order in which the balls come
out of the urn, the total number of ways to get a + ^ balls out of the

total number a + 6 balls is obviously expressed by and this is

the number of all possible and equally likely cases in this problem. The
number of ways to draw a white balls out of the total number a of white

balls in the urii is and similarly represents the number of ways
of drawing ^ black balls out of the total number I of black balls. Now
every group of a white balls combines with every possible group of

black balls to form the total of a white balls and black balls, so that

the number of ways to form all the groups containing a white balls and

P black balls is * Cf. This is also the number of favorable cases;

hence, the required probability is

or, in a more explicit form,

(1 )
l-2--(a + g) ,

^ 1*2 • ‘
• oj-1-2 • •

• jS

a(a — 1)
• •

• (g — g + 1)
• ^ 1)

• *
‘ (b — + 1)

(a -f- 6)(a -f- & — 1)
* *

* (a -|- 6 — ol — /3 4” 1)

Problem 9. An urn contains n tickets bearing numbers from i to n,

and m tickets are drawn at a time. What is the probability that i of

the tickets removed have ntimbers previously specified?

Solution. This problem does not essentially differ from the preceding

one. In fact, i tickets with preassigned numbers can be likened to i

white balls, while the remaining tickets correspond to the black balls.

The required probability, therefore, can be obtained from the expression

(1) by taking a = 6 = n ~ i, a = ^, y? = m ~ i and, all simplifications

performed, will be given by

(0\ ^
- 1)

• •
• (to - z + 1)

^ ^ ^ n{n — 1)
• •

* (n — i + 1)

The conditions of this problem were realized in the French lottery,

which was operated by the French royal government for a long time but

discontinued soon after the Revolution of 1789. Similar lotteries

continued to exist in other European countries throughout the nineteenth

century. In the French lottery, tickets bearing numbers from 1 to 90
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were sold to the people, and at regular intervals drawings for winning

numbers were held in diflPerent French cities. At each drawing, 5

numbers were drawn. If a holder of tickets won on a single number,

he received 15 times its cost to him. If he won on two, three, four, or

five tickets, he could claim respectively 270, 5,500, 75,000, and, finally,

1,000,000 times their cost to him.

The numerical values of the probabilities corresponding to these

different cases are worked out as follows: we must take n = 90, m = 5,

and i = 1, 2, 3, 4, or 5 in the expression (2). The results are

Single ticket A = i_
90 18‘

Two tickets

Three tickets

Four tickets

5*4
90-89

5-4-3
90 • 89 - 88

5-4-3-2
90 • 89 - 88 • 87
5-4-3-2-

1

Five tickets
90 - 89 • 88 • 87 • 86

2

8or
1

11748'

1

511038'

1

43949268'

8. Problem 10. From an urn containing a white balls and h black

ones, a certain number of balls, fc, is drawn, and they are laid aside, their

color unnoted. Then one more ball is drawn; and it is required to find

the probability that it is a white or a black ball.

Solution. Suppose the k balls removed at first and the last ball

drawn are laid on fc + 1 different places, so that the last ball occupies

the position at the extreme right. The number of ways to form groups

of A: + 1 balls out of the total number of a + 5 balls, attention being

paid to the order, is

(a -f- 5) (a "T 5 — 1)
• *

* (a “j- 6 —^ jfe).

Such is the total number of cases in this problem, and they may all be

considered as equally likely. To find the number of cases favorable to

a white ball, we observe that the last place should be occupied by one of

the a white balls. Whatever this white ball is, the preceding k balls

form one of the possible arrangements out of a + 6 — 1 remaining balls

taken k at a time. Hence, it is obvious that the number of cases favorable

to a white ball is

a{a + 6 — 1)
•

• + h -- k)^

and therefore the required probability is given by

a

a + h



COMPUTATION OF PROBABILITIES 21Sec. 9]

.for a white ball. In a similar way we find the probability 6/(a + b) of

drawing a black ball. These results show that the probability of getting

white or black balls in this problem is the same as if no balls at all were

removed at first. Here we have proof that the peculiar circumstances

observed in Prob. 6 are general.

9. Problem 11. Two dice are thrown times in succession. What is

the probability of obtaining double six at least once?

Solution. As there are 36 cases in every throw and each case of the

first throw can combine with each case of the second throw, and so on,

the total number of cases in n throws will be 36"^. Instead of trying to

find the number of favorable cases directly, it is easier to find the number
of unfavorable cases; that is, the number of cases in which double sixes

would be excluded. In one throw there are 35 such cases, and in n throws

there will be 35^. Now, excluding these cases, we obtain 36^ — 35”

favorable cases; hence, the required probability is

p = 1 - (M)”-

If one die were thrown n times in succession, the probability to obtain

6 points at least once would be

p = 1 - (I)”-

Now, suppose we want to find the number of throws sufficient to

assure a probability > 3^ of obtaining double six at least once. To this

end we must solve the inequality

< 4

for n; whence we find

,1

i

n >
log 2

log 36 — log 35
= 24.6

It means that in 25 throws there is more likelihood to obtain double

six at least once than not to obtain it at all. On the other hand, in

24 throws, we have less chance to succeed than to fail.

Now, if we dealt with a single die, we should find that in 4 throws

there are more chances to obtain 6 points at least once than there are

chances to fail.
*

This problem is interesting in a historical respect, for it was the first

problem on probability solved by Pascal, who, together with his great

contemporary Fermat, had laid the first foundations of the theory of

probability. This problem was suggested to Pascal by a certain French

nol^leman, Chevalier de Mere, a man of great experience in gambling.

He had observed, the advantage of betting for double six in 25 throws

and for one six (with a single die) in 4 throws. He found it difficult to
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understand because, he said, there were 36 cases for two dice and 6 cases

for one die in each throw, and yet it is not true that 25:4 = 36:6. Of

course, there is no reason for such an arbitrary conclusion, and the cor-

rect solution as given by Pascal not only re^^^^^^^ any apparent paradoxes
^

in this case, but it led to the same number, 26, observed by gamblers f!i

their daily experience.

10. Problem 12, A certain number n of identical balls is distributed

among N compartments. What is the probability that a certain speci-

fied compartment will contain h bails?

Solution. To find the number of all possible cases in this problem,

suppose that we distinguish the balls by numbering them from 1 to n.

The ball with the number 1 may fall into any of the N compartments,

which gives N cases. The ball with the number 2 may also fall into any
one of the N compartments; so that the number of cases for 2 balls will

heN ' N = Likewise, for 3 balls the number of cases will be

• A = N\

and for any number n of balls the number of cases will be To find

the number of favorable cases, first suppose that a group of h specified

balls falls into a designated compartment. The remaining n — h ballsmay
be distributed in any way among iV — 1 remaining compartments. But
the number of ways to distribute n — h balls among iV* — 1 compart-
ments is (N “ 1)”“"^ and this becomes the number of all favorable cases

in which a specified group of h balls occupies the designated compartment.
Now, it is possible to form CJ such groups; therefore, the total number of

favorable cases is given by

and the required probability will be

In case n, N and h are large numbers, the direct application of this

formula becomes -diflSicult, and it is advisable to seek an approximate

depression for To this end we write the preceding expression thus:

(j^) / iv-y
1-2-Z • hy Nj

where
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Now, supposing 1 S fc g - 1, we have

{a) ('- 1)0
h-h^ _'h

^

hQi - k) ^ ^ h

) n

On the other hand,

k{h - k)S

and so

Q>) 0
-
00 -^) * 0

-0-

The inequalities (a) and (6) give simple lower and upper limits for P.
For we can write P^ thus:

p’ = n(* - -^)
and then apply \a) or (6), which leads to these inequalities

^ - 4)*"' ^ > ('
-

Correspondingly, we have

/.^\A

^ \N/
- • - J

/ \h

^ (v)
^ 1 • 2 • 3 • •

}('-ri'-r-
Problem 13. What is the probability of obtaining a given sum s of

points with n dice?

Solution. The number of all cases for n dice is evidently 6’'. The
number of favorable cases is the same as the total number of solutions of

the equation

(1) CkTl 0:2 4" + = S

where ai, a2 ,

* *
* an are integers from 1 to 6. This number can be

determined by means of the following device: Multiplying the polynomial

(2) X +

by itself, the product will consist of terms

^ai+a2
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where a 1 and 0^2 independently assume all integral values from 1 to 6.

Collecting terms with the same exponent s, the coelBBicient of will give

the number of solutions of the equation

+ 0^2 —

ai, a 2 being subject to the above mentioned limitations.

Similarly, multiplying the same polynomial (2) three times in itself

and collecting terms with the same exponent s, the coefScient of x® will

give the number of solutions of equation (1) for n = 3. In general, the

number of solutions of equation (1) for any n is the coelB&cient of x® in

the expanded polynomial

(x + + X®)".

Now we have identically

X + x^ + # + x^ + X® + X® =

and by the binomial theorem

.2 _L /y.4 _L _L ^6 —
1 — X

a;«(l _
iJo

00

(1 - a;)-” = 2)
Jb = 0

Jtiplying these series we find the following expression as the

coe^i^fent of X*:

8 — n
6

X i-iycict:h-i
1 = 0

S fl
where summation extends over integers not exceeding —g— The same

sum represents the number of favorable cases. Dividing it by 6^, we
get the following expression for the probability of s points on n dice:

s— n
6

.1

6Z-1-

1 = 0

The preceding problems suffice to illustrate how probability can be

determined by direct enumeration of cases. For the benefit of students,

a few simple problems without elaborate solutions are added here.
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Problems for Solution

1. What is the probability of obtaining 9, 10, 11 points with 3 dice?

AnS. 2^10, ^J4l6r ^Ki6-
2. What is the probability of obtaining 2 heads and 2 tails when 4 coins are

thrown? Ans. %.
3. Two urns contain respectively 3 white, 7 red, 15 black balls, and 10 white,

6 red, 9 black balls. One ball is taken from each urn. What is the probability that

they both will be of the same color? Ans. ^®K25*
4. What is the probability that of 6 cards taken from a full pack, 3 will be black

.

and 3 red. Ans. = 0.332 approximately.

6.

Ten cards are taken from a full pack. What is the probability of finding

among them (a) at least one ace; (6) at least two aces? Ans.

6. The face cards are removed from a full pack. Out of the 40 remaining cards,

4 are drawn. What is the probability that they belong to different suits?

Ans.

7. Under the same conditions, what is the probability that the 4 cards belong to

different suits and different denominations? Ans.

8. Five cards are taken from a full pack. Find^ tho probabilities (a) that they are

of different denominations; (6) that 2 are of the same denomination and 3 scattered;

(c) that one pair is of one denomination and another pair of a different denomination,

and one odd; (d) that 3 are of the same denomination and 2 scattered; (e) that 2 are

of one denomination and 3 of another; (f) that 4 are of one denomination and 1 of

another.

Ins. (a) (5) 176^^,35; (c) (d) 8«i 65; (e) Mies; (/) Hies.
9 . What is the probability that 5 tickets taken in succession in the French lottery

will present an increasing or decreasing sequence of numbers? Ans. Ho-
10. What is the probability that among 5 tickets drawn in the French lottery there

is at least one with a one-digit number? Ans. = 0.417.

11. Twelve balls are distributed at random among three boxes. What is the

55 2^^

probability that the first box will contain 3 balls? Ans. ~
312

12. In Prob. 12 (page 22) what is the most probable number of balls in a s.

box? Ans. The probability

‘ified

Vh ==
Cn\N - 1 )”“^

N»

is the greatest if the integer h is determined by the conditions

n -f 1

N
- 1 ^

ri + 1

~ N
'

13. Apply these considerations to the case of n — 200, N
h = 10 the inequalities on page 23 give

20. Ans. Since

Pio <
1010

101

Pio >

To find an approximate value of

IV 20/ V 40/

wy, _ iYY, - iV
10 ! \ 20/ \ 20/

(1 -
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note that

To 3 decimals

(1 - = e
20 2-202

1

3-203

joio = 0 .128 .

14. Four different objects, 1, 2, 3, 4, are distributed at random on four places

marked 1, 2, 3, 4. What is the probability that none of the objects occupies the place

corresponding to its number? Ans. %.
J^6. Two urns contain, respectively, 1 black and 2 white balls, and 2 black and

1 white ball. One ball is transferred from the first urn into the second, after which a

ball is drawn from the second urn. What is the probability that it is white?

Ans, %2-
16. What is the probability of getting 20 points with 6 dice?

Ans. 0.09047.

17 . An urn contains a white and b black balls. Balls are drawn one by one until

only those of the same color are,, left. What is the probability that they are white?

% Ans.--4-7*

18 . In an urn there are n groups of p objects each. Objects in different groups are

distinguished by some characteristic property. What is the probability that among
ai •+ as + * • • 4- cin objects (0 ^ ai ^ p; ^ = 1, 2, . . . ?^) taken, there are on of

one group, a2 of another, etc.? Ans. Let X among the numbers au 0:2 ,
.. . an be

equal to a, m be equal to 6, . . . <r be equal to 1. The required probability is

n\ OS'”

X!ja! ff! C“;+« • • -botn

problem 8 is a particular case of this.

19

.

There are N tickets numbered 1, 2, . . . AT of which n are taken at random and
arranged in increasing order of their numbers: Xi < X2 < • * • < Xr,, What is the

probability that Xm — M7 Ans.
C%



CHAPTER II

THEOREMS OF TOTAL AND COMPOUND PROBABILITY

1. As the problems become more complex the difficulties in enumerat-

ing cases grow and often the computation of probabilities by direct

application of definition becomes very involved. In many cases the

complications can be avoided by use of two theorems which are funda-

mental in the theory of probability.

Before we can give a clear and exact statement of the first fundamental

theorem, we must define what is meant by mutually exclusive^^ or

“incompatible^^ events. Events are called mutually exclusive or

incompatible if the occurrence of one of them precludes the occurrence

of all the others. For instance, the four events concerning the number
of points on two dice

First Die

1

2

3

4

are mutually exclusive because it is evident that as soon as one of them
occurs, none of the others can materialize.

On the contrary, events are compatible if it is possible for them to

materialize simultaneously. For instance, the events of 5 points on one

die and 5 points on the other, are compatible, since in tossing two dice

it is possible to get 5 points on each.

To denote the probability of an event A, we shall use the symbol (A).

To denote the probability of A or B (or both) we shall use the symbol
(A + B). Dealing with several events A, B, . . . L, the symbol

(A H- B + * *
* + B)

will denote the probability of the occurrence of at least one of them.
If A, . . L are mutually exclusive events, this symbol represents

the probability of the occurrence of one of them without specification as

to which one.

2. Now we shall state the first fundamental theorem, called the

“theorem of total probability^^ or “theorem of addition of probabilities,^^

in the following way:

Theorem of Total Probability. The probability for one of the mutually

exclusive events A ij A 2 ,
. . . An to materialize

^
is the sum of the probabilities

27
'

Second Die

4

3

2

1



28 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. II

of these events. In symbolical notations, it is expressed thus:

(Ai + ^2 + * *
* + -Aw) = (^i) + (^2) -[“••*+ {Af).

Proof. Let N be the number of all possible and equally likely cases

out of which mi cases are favorable to the event Ai, m2 cases are favorable

to the event A2, . . . ,
and finally, cases are favorable to the event An-

These cases are all different, since events Ai, Az, . - . A^ are incompati-

ble. The number of cases favorable to either Ax or A2, ... or An is

therefore

mi “f” m2 “j“ + mn.

Hence, by definition

/ ^ ^ i A \ mi + m2 + * •
• + mn mi

,

m2
,

(Al + A2 + • •
* + An) ==

TtT
= ICr + -^ +N N ' N

+ + mn
N'

Again, by definition of probability,

m2

N = (A.);
Mn
N (An),

and so finally

(Ai + A2 + * *
* + An) = (Ai) + (A2) + * *

* + (An),

as stated.

3. It is important to know that the same theorem, stated in a slightly

different form, is especially useful in applications. An event A can

occur in several mutually exclusive forms, Ai, A 2, . . . An, which may
be considered as that many mutually exclusive events. Whenever A
occurs, one of these events must occur, and conversely. Consequently,

the probability of A is the same as the probability of one (unspecified)

of its mutually exclusive forms. If, for instance, occurrence of 5 points

on two dice is A, then this event occurs in 4 mutually exclusive forms, as

tabulated above.

From the new point of view, the theorem of total probability can be
stated thus:

Second Form, of Theorem of Total Probability. The probability of

an event A is the sum of the probabilities of its mutually exclusive forms

Ai, A2, . . . An; or
j
using symbols

j

(A) == (Ai) + (A 2) + * •
‘ + (An).

Probabilities (A 1), (A 2), . . . (An) are partial probabilities of incom-
patible forms of A . Since the probability A is their sum, it may be called

a total probability of A. Hence the name of the theorem.
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In the preceding example we saw that 5 points on two dice could be

obtained in 4 mutually exclusive ways. Now the probability of any one

of these ways is 3^6 5
hence, by the preceding theorem, the probability

of obtaining 5 points with two dice is

A' + bV + A- + =
-/b'

=

as it should be.

If events Ai, A 2 ,
* An are not only mutually exclusive, but

“exhaustive,^’ which means that one of them must necessarily take place,

the probability that one of them will happen is a certainty = 1, so that

we must have

(Ai) + (A 2)
+•••-)- (An) = 1.

An event which is not certain, may or may not happen; this constitutes

two mutually exclusive cases. It is customary to call nonoccurrence of a

certain event A as the “event opposite” to A, and we shall denote it

by the symbol A. Now A and A constitute two exhaustive and mutually

exclusive cases. Hence, by the preceding remark

(A) + (A) = 1.

That is, if p is the probability of A

g = 1 - p

represents the probability that A will not occur.

4. If an event A is considered in connection witn another event Bj

the compound event AB consists in simultaneous occurrence of A and B,

For three events A, Bj C, the compound event ABC consists in simul-

taneous occurrence of A and B and C, and so on for any number of

component events. We shah, denote the probability of a compound
event AB ... Lhj the symbol

(AB . . . L).

An event A can materialize in two mutually exclusive forms, namely,

as A and B ov A and B. Hence, by the theorem of total probability

(A) = (A^) + (AJ5).

Similarly

(B) ^ (BA) + (BA),

or, since the symbol (BA) does not depend upon the order of letters,

(B) = (AB) + (AB).

The sum (A) + (B) can be expressed as

(A) + (5) - (AB) + [(AB) + (AB) + {AB)].
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Again, by the theorem of total probabilities^ the sum

{AB) + UB) + {AB)

represents the probability (A + B) of the occurrence of at least one of

the events A or B. The preceding equation leads to the useful formula

(1) (A + 5) = (A) + (B) (AB)

which obviously is a generalization of the theorem of total probability;

for (AB) = 0 if A and B are incompatible. Equation (1) can be used to

derive an important inequality. Since (A + .B) g 1, it follows from (1)

that

(AB) ^ (A) + (B) ^ 1.

If B itself is a compound event AiA^, this inequality leads to

(AA 1A 2) § (A) + (AiA,) - 1.

But
(AiA^) ^ (Ai) + (A 2)

— 1,

and so

(AA1A2) ^ (A) + (Ax) + (A2) - 2

for three component events. Proceeding in the same manner, we can

establish the following general inequality:

(AA 1A 2
*

•
* An-i) ^ (A) + (Ai) + (A 2) + • • • + (An-i) — (n — 1).

Applying this inequality to events A, Ali, . . . An-i respectively

opposite to A, Ai, . . . A^_i, we get

(All An—1) ^ (A) + (Al) + • •
• + (An-l) ~ (n — 1),

or, since (Ai) === 1 — (Ai),

(A) + (Ax) •

-f- (An-l) ^ 1 — (AAx * *
* An-l)*

Now the compound event AAi . . . An-i means that neither A nor

Ax, , . . nor An-i occurs. The event opposite to this is that at least

one of the events A, Ax, . . . An-x occurs. Hence,

1 — (AAi • * * An-x) == (A + Ax 4* '
* + An-l),

and we reach the following important inequality:

(A + Ax + V
*

• + An-l) ^ (A) + (Ax) + • •
• 4- (A«-i).

5. Equation (1) can be extended to the case of more than two events.

Let 5 mean the occurrence of at least one of the events Ax or A 2 . Then
by(l)-:vrv4'

(A 4- Al + A2) = (A) + (Ax + A2) - (AB)/ •

f
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As to (Ai + A 2); its expression is given by (1). The compound event

AB means the occurrence of one at least of the events AAi or AA^-

Hence, applying equation (1) once more, we find

{AB) = (AAi + AA 2) = {AAi) + (AA 2) - (AA 1A 2)

and after due substitutions*

{A + Ai + A2) = (A) + (Ai) + (A2) ~ (AAi) — {AA2) ~ (A1A2) +
+ {AAiA^,

Proceeding in the same way and using mathematical induction, the

following general formula can be established:

(A + Ai + * •
• + An-i) = + ^{AiAjAjo) — • • •

h3

where summations refer to all combinations of subscripts taken from

numbers 0, 1, 2, ... n — 1, one, two, three, ....
,
and n at a time.

6. Let A and B be two events whose probabilities are (A) and {B).

It is understood that the probability (A) is determined' without any
regard to B when nothing is known dJbout^ the occurrence or nonoccur-

rence k)f B. When it is known that B occurred, A may have a different

probability, which we shall denote by the symbol (A, B) and call “con-

ditional prpbabn^^^^ of given that B has actually happened.”

Now we can state the second fundamental theorem, called the

“theorem of compound probability” or “theorem of multiplication of

probabilities,” as follows:

Theorem of Compound Probability. The probability of simultaneous

occurrence of A and B is given by the product of the unconditional probability

of the event A by the conditional probability of B, supposing that A actually

occurred. In other words,

{AB) - (A)* (^, A).

Proof. Let N denote the total number of equally likely cases among
which m cases are favorable to the event A. The cases favorable to A
and B are to be found among the m cases favorable to A. Let their

number be mi. Then, by the definition of probability,

{AB)

which also can be written thus:

/ ^ 7->\

(45) = ^
mi
m

Now the ratio m/N represents the probability of A . To find the meaning
of the second factor, we observe that, assuming the occurrence of A,
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there are only m equally likely cases left (the remaining N — m cases

becoming impossible) out of which mi are favorable to B, Hence the

ratio mi/m represents the conditional probability (B, of B supposing

that A has actually happened.

Now since

m
N = (A),

mi
m = (B, A),

the probability of the compound event A5 is expressed by the product

(AB) = (A) • (B, A).

Since the compound « event AB involves A and B symmetrically,

we shall have also

(AB) = (B) • (A, 5).

The theorem of compound probability can easily be extended to several

events. For example, let us consider three events, A, B, C, The occur-

rence of A and B and C is evidently equivalent to the occurrence of the

compound event AB and C. We have, therefore.

(ABC) = (AB) • (C, AB)

by the theorem of compound probability. By the same theorem

(AB) = (A) • (B, A),

so that

(ABC) = (A) • (B, A) • (C, AB).

Obviously this formula can be extended to compound events con-

sisting of more than three components.

.

In one particular but very important case, the expression for the

compound probability can be simplified; namely, in the case of so-called

^independent events.” Several events are ^independent” by definition

if the probability of any one of them is not affected by supplementary

knowledge concerning the materialization of any number of the remaining

events. For instance, if A and B represent white balls drawn from
two different urns, the probability of A is the same whether the color

of the ball drawn from the other urn is known or not. Similarly, granted

that a coin is unbiased, heads at the first throw and heads at the second

throw are independent events. In such theoretical cases the inde-

pendence of events can be reasonably assumed or agreed upon. In other

cases, and especially in practical applications, it is not easy to decide

whether events should be considered as independent or not.

If A and B are independent, the conditional probability (B, A) is

the same as the probability (B) found without any reference to A; this
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follows from the definition of independence. Hence, the expression of

compound probability (A5) for two independent events becomes

{AB) = (A) • (5)

so that the probability of a compound event with independent com-

ponents is simply equal to the product of the probabilities of component

events. This rule extends to any number of component events if they

are independent. Let us consider three independent events, A, and (7.

The independence of these events implies

(5,A) = (5); {C,AB)=={C)

and hence

{ABC) = (A) • {B) • (C)

in accordance with the rule.

To illustrate the theorem of compound probability, let us consider

two simple examples. An urn contains 2 white balls and 3 black ones.

Two balls are drawn, and it is required to find the probability that they

are both white. Let A be the event consisting in the white color of the

first ball, and B the event consisting In the ‘white color of the second ball.

The probability (A) of extracting a white ball in the first place is

(A) =
-h

To find the conditional probability {B, A) we observe, after drawing one

white ball, that 1 white and 3 black balls remain in the urn. The
probability of drawing a white ball under such circumstances is

{B, A) = J.

Now, by the theorem of compound probability, we shall have

Evidently, in this example we dealt with dependent events.

As an example of independent events, let a coin be tossed any given

number of times; say, n times. What is the probability of having only

heads? The compound event in this example consists of n independent

components; namely, heads at every trial. Now the probability of

heads in any trial is and so the required probability will be 1/2^.

Note: Two events A and B are independent by definition, if

(A, B) == (A) and (5, A) == (B).

However, one of these conditions follows from the other. Suppose the condition

(A,^) >= (A)

is fulfilled, so that A is independent oi B. We have then

UB) - (B) . (A).
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On the other hand,

{AB)

whence
(B, = (B),

so that B is independent of A.

Three events A, B, C are independent if the following four conditions are fulfilled:

(A, B) = (A); (A, C) = (A); (B, 0) == (B); (C, AB) = (C).

From the first three conditions it follows that

(B, A) = (B); (C, A) - (C); (C, B) - (C).

To show that the other requirements

(B, AC) = (B); (A,BC) - (A)

are also fulfilled, we notice that

(ABC) = (A) . (B, A) . (C, AB) - (A) • (B) • (C)

because (C, AB) = (C) by hypothesis and (B, A) — (B) as proved. On the other

hand,

(ABC) = (A) . (C, A) • (B, AC)

and (C, A) = (C) . Hence, comparing with the preceding expression,

(B, AC) = (B).

Similarly, it can be shown that

(A,BC)-(A).

The independence of four events A, B, C, 2) is assured if the following 11 conditions

are fulfilled:

(A, B) - (A, C) « (A, D) = (A); (B, C) = (B, D) - (B); (C, D) - (C);

(C, AB) - (C); (Z), AB) = (B, AC) = (B, BC) = (B); (B, ABC) = (B).

And in general, independence of n events is assured if 2” — n — 1 conditions of

similar type are fulfilled.
I

^If several events are independent, every two of them are independent; but this

does not suffice for the independence of all events, as can be shown by a simple exam-
ple. An urn contains foiir tickets with numbers 112, 121, 211, 222, and one ticket is

drawn. What are the probabilities that the first, second, or third digits in its number
are 1? Let a unit such as the first, second, or third digit, be represented, respectively

by A, B, or C. Then

(A) ^(B) «(C) = t = i-

Compound probabilities (AB), (AC), (BC) are

(AB) = (AC) = (BC) - i,

since among four tickets there is only one whose number has first and second, or

first and third, or second and third digits of 1. Now, for instance,

(AB) - i - i: i = (A).(B),
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whence A and B are independent. Similarly, A and C; C and B are independent.

Thus, any two of the events A, B, C are independent, but not all three events are.

For, if they were, we should have

(ABC) = i

But (ABC) — 0 since in no ticket are all three digits equal to 1.

7. The theorems of total and compound probability form the founda-

tion of the theory of probability as it represents a separate branch of

mathematical science. They serve the purpose of finding probabilities

in more complicated cases, either by being directly applied or by enabling

us to form equations from which the required probabilities can be found.

A few selected problems will illustrate the various ways of using these

theorems.

.^/Problem 14. An urn contains a white balls and h black balls; another

“"contains c white and d black balls. One ball is transferred from the first

urn into the second, and then a ball is drawn from the latter. What is

the probability that it will be a white ball?

Solution. The event consisting in the white color of the ball drawn
from the second urn, can materialize under two mutually exclusive forms:

when the transferred ball is a white one, and when it is black.' By the

theorem of total probability, we must find the probabilities corresponding

to these two forms. To find the probability of the first form, we observe

that it represents a compound event consisting in the white color of the

transferred ball, combined with the white color of the extracted ball.

The probability that the transferred ball is white is given by the fraction

a

Cb h

and the probability that the ball removed from the second urn is white, is

c + 1

c -f- d -h 1

because before the drawing there were c + 1 white balls and d black

balls in the second urn. Hence, by the theorem of compound probability,

the probability of the first form is

a[c + 1)

(a + 5)(c + d + 1)

In the same way, we find that the probability of the second form is

he

(a + 6)(c + d + 1)

and the sum of these two numbers

ac + he + a

(a + 5)(c + d+ 1)
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gives the probability of extracting a white ball from the second urn, after

one ball of unknown color has been transferred from the first urn.

8. Problem 15. Two players agree to play under the following

conditions: Taking turns, they draw the balls out of an urn containing

a white balls and b black balls, one ball at a time. He who extracts the

first white one wins the game. What is the probability that the player

who starts will win the game?
Solution. Let A be the player who draws the first ball, and let B

be the other player. The game can be won by A, first, if he extracts a

white ball at the start; second, if A and B alternately extract 2 black

balls and then A draws a white one; third, if A and B alternately extract

4 black balls and the fifth ball drawn by A is white; and so on. By the

theorem of total probability, the probability for ^ to win the game,

is the sum of the probabilities of the mutually exclusive ways (described

above) in which he can win the game. The probability of extracting a

white ball at first is

a

(2 -4“ 6

The probability of extracting 2 black balls and then 1 white ball is found

by direct application of the theorem of compound probabilities. Its

expression is

b(b - l)a

((X “h 6)(u "T 6 — l)(a “f" & — 2)

The probability of extracting 4 black balls and then 1 white ball is given

by

bQ) - l)(h - 2)(6 - 3)a
^

(a *4“ 6)(<2 & — l)((x + 6 — 2)(a H- 6 — 3)(a 4~ & — A)

using the same theorem of compound probability.

In the same way we deal with all the possible and mutually exclusive

ways which would allow A to win the game. Then, by adding the above

given expressions of partial probabilities, we obtain the expression for the

required probability in the form of the sum

P ==
a

\

a + 6j

1 +
b{b - 1)

(a -j- 6 — l)(a -f" 6 — 2)
+

b{b^i){h^-2){b-d)
,

{g A" b l)(a 4“ h — 2) (a 4“ 6 — 3)(a 4” h — 4)

The law of formation of different terms in this sum is obvious; and
the sum automatically ends as soon as we arrive at a term which is equal

to zero.
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In the same way, we can find that the probability for the player B
to win is expressed by an analogous sum:

b
,

h(h - 1)(& - 2)
. . .

G b — 1 — 3)

But one of the players, A or B, must win the game, and the winning of

the game by A and B are opposite events. Hence,

P + Q = 1

or, after substituting the above expressions for P and Q and after obvious

simplifications,

1 ,

h{h-l)
. . .

_ci + b

a + h-l^{a + h - l){a + b ~ 2) a
'

This is a noteworthy identity, obtained, as we see, by the principles

of the theory of probability. Of course, it can be proved in a direct

way, and it would be a good problem for students to attempt a direct

proof. There are many cases in which, by means of considerations

belonging to the theory of probability, several identities or inequalities

can be established whose direct proof sometimes involves considerable

diflBculty.

9. Problem 16. Each of k urns contains n identical balls numbered
from 1 to n. One ball is drawn from every urn. What is the probability

that m is the greatest number drawn?

Solution. Let us denote by Pm the required probability. It is not

apparent how we can find the explicit expression for this probability, but

using the theorems of total and compound probability, we can form

equations which yield the desired expression for P,^ without any difficulty^

To this end, let us first find the probability P that the greatest number
drawn does not exceed m. It is obvious that this may happen in m
mutually exclusive ways; namely, when the greatest number drawn is

1, 2, 3, and so on up to m. The probabilities of these different hypotheses

being Pi, P 2 ,
. . . Pm, their sum gives the following first expression for

P:

(1) ^ P =Pl + P2^ . .
. +

-

We can find the second expression for P using the theorem of com-
pound probability; namely, the greatest number drawn does not exceed

m if balls drawn from all urns have numbers from 1 to m. The proba-

bility of drawing a ball with the number 1, 2, 3, ... m from any urn is

m/n. And the probability that this happen for every urn is a

compound event consisting of k indepmdent events with the same

Q =
G b
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probability m/n. Therefore, by the theorem of compound probability

And this compared with (1) gives the equation

/yyih

(2) P1+P2+ • •
• +P«. =

Substituting w — 1 for m in this equation, we get

Jpl + ^2 + * ‘
* + P (m — 1)^

and it suffices to subtract this from (2) to have the required expression for

Pm:

-D — ““ 1 )^*

^ w> ~~T
*

10. Problem 17. Two persons, A and P, have respectively ^ + 1

and n coins, which they toss simultaneously. What is the probability

that A will have more heads than P?
Solution. Let /-t, p! and v' be numbers of heads and tails thrown

by A and P, respectively, so that ii A- v — n A' 1, A' A- n. The
required probability P is the probability of the inequality ix > }jf. The
probability 1 — P of the opposite event ju S is at the same time

the probability of the inequality v > v'] that is, 1 — P is the probability

that A will throw more tails than B. By reason of symmetry 1 — P = P,

% 11. Problem 18. Three players A, P, and C agree to play a series of

games observing the following rules: two players participate in each game,

while the third is idle, and the game is to be won by one of them. The
loser in each game quits, and his place in the next game is taken by the

player who was idle. The player who succeeds in winning over both

of his opponents without interruption, wins the whole series of games.

Supposing that the probability for each player to win a single game is

and that the first game is played by A and S, find the probability for

A, By and C, respectively, to win the whole series, if (a) the number of

games to be played is limited and may not exceed a given number n;

if (&) the number of games is unlimited.

Solution. Let P«, Qn, Rn be the probabilities for A, B, and C, respec-

tively, to win a series of games when their number cannot exceed n. By
reason of symmetry, Pn = Qn so that it remains to find P,^ and Pn-

The player A can win the whole series of games in two mutually exclusive
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ways : if he wins the first game, or if he loses the first game. Let the

probability of the first case be pw and that of the second Tn. Then

Pn ~ Pn “h ^71.

A can win the whole series after winning the first game, in two mutually

exclusive ways: (a) if he wins over B and C in succession; (6) if he wins

the first game from B and loses the second game to C
;
then, if in the third

game C loses to B, and in the fourth game A wins over B and later wins

the whole series of not more than n — 3 games. Now, the probability

of case (a) is H M M by the theorem of compound probability;

that of case (6) by the same theorem is }^ipn~z) and the total probability is

(1) Vn — \ A- iPn-3-

If A loses the first game to B, but wins the whole series, then in the

second game C wins over 5 while the third game is won by A, and not

more than n — 2 games are left to play. Hence,

(2) Tn ~ ^pn-~2*

4
1 + H +

8

substitutions yields

Pzk

Pzk+1

Pzk+2

or, in condensed form for an arbitrary n

II equation (1)

1 .
1 \

• • •

1 1 \
Qgi
1

4- • •

. A
82 ^ • •

• + ^)

Pn —* '^(1
.

S

denoting by [x] the greatest integer contained in x. Hence, by virtue of

(2) the general expression of will be

and that of P„, Qn

_r^i= ,5, _ ,.4,8 L 3 JPn — Qn — A® A8
Finally, to find the probability for C to win, we observe that this can

happen only if C wins the second game; hence,
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Since < 1, the difference

1 - Pn - - P. = *8 L 3 J + -3^8 + *8 L 3 J

represents the probability of a tie in n games. This probability decreases

rapidly when n increases, so that in a long series of games a tie is prac-

tically impossible. If the number of games is not limited, the proba-

bilities P, Q, P for A, B, C, respectively, to win are obtained as limits of

P». Qn, Rn, when n increases indefinitely. Thus

P = Q=^, B = -^.

Problems for Solution

1. Three urns contain respectively 1 white and 2 black balls; 3 white and 1 black

ball; 2 white and 3 black balls. One ball is taken from each urn. What is the proba-

bility that among the balls drawn there are 2 white and 1 black? Ans.

2. Cards are drawn one by one from a full deck. What is the probability that

10 cards will precede the first ace? Ans. — 0.03938.

3. Urn 1 contains 10 white and 3 black balls; urn 2 contains 3 white and 5 black

balls. Two balls are transferred from No. 1 and placed in No. 2 and then one ball is

taken from the latter. What is the probability that it is a white ball? .dns. ’®% 3 o.

4. Two urns identical in appearance contain respectively 3 white and 2 black balls;

2 white and 5 black balls. One urn is selected and a ball taken from it. What is the

probability that this ball is white? Ans. ^3^o*

6.

What is the probability that 5 tickets drawn in the French lottery all have one-

digit numbers? Ans. 44162 6 = 29. 10“^

6. What is the probability that each of the four players in a bridge game will get a

(1 • 2 • • • 13)^
complete suit of cards? Ans. 24--— — = 4.474.

1 . j ... 52

7. What is the probability that at least one of the players in a bridge game will

get a complete suit of cards?

,
16 • 13! • 39! - 72 - (131)2 • 26! + 72 • (13!)^

Ans. — = 2.52 • 10"
' !

See Sec. 5, page 31.

8. From an urn with a white and b black balls n balls are taken. Find the prob-

ability of drawing at least one white ball. Ans. The required probability can be

expressed in two ways. First expression:

h(b -T) » »
• (6 - + 1)

{cl b^ (P' b — 1) • •
• (a -j- 6 — -j- 1)

Second expression:
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9. Three players A, B,C in turn draw balls from an urn with 10 white and 10 black

balls, taking one ball at a time. He who extracts the first white ball wins the game.
Supposing that they start in the order Ay By <7, find the probabilities for each of them
to win the game. Ana. For Ay 0.56584; for B, 0.29144; for C, 0.14271.

10. If n dice are thrown at a time, what is the probability of having each of the

points 1, 2, ... 6, appear at least once? Find the numerical value of this prob-

abihty for n = 10. Jins.

2>n = 1 - 6(1)- + 15(1-)- - 20(1)- + 15(1)- - 6 • (D-
pio = 0.2718.

Hint: Use the formula in Sec. 5, page 31.

11.

In a lottery m tickets are drawn at a time out of the total number of n tickets,

and returned before the next drawing is made. What is the probability that in h

drawings each of the numbers 1, 2, ... n will appear at least once? Ans.

n(n ~ 1)/n — mV/n - m — iV
1*2 \ n / \ n — l /

12.

We have k varieties of objects, each variety consisting of the same number of

objects. These objects are drawn one at a time and replaced before the next drawing.

Find the probability that n and no less drawings will be required to produce objects of

all varieties. Ans.

k^~'^Pn = (A — l)-“i
1 • 2

(k - -

13. Three urns contain respectively 1 white, 2 black balls; 2 white, 1 black balls;

2 white, 2 black balls. One ball is transferred from the first urn into the second; then
one from the latter is transferred into the third; finally, one ball is drawn from the

third urn. What is the probability of its being white? Ans. ^J^o-
14. Each of n urns contains a white and b black balls. One ball is transferred

from the first urn into the second, then one ball from the latter into the third, and so

on. Finally, one ball is taken from the last urn. What is the probability of its being

white? Atis. Denote by pk the probability of drawing a white ball from the kth. urn.

Then

Pk+i
~ a + 1

,Vk + (1 “ Pk)

for fc = 1, 2, . . . n — 1. Hence,

a

16. Two players A and B toss two dice, A starting the game. The game is won
by A if he casts 6 points before B casts 7 points; and it is won by B if he casts 7 points

before A casts 6 points. What are the probabilities for A and B to win the game H
they agree to cast dice not more than n times? What is the probability of a tie?

Ans. Probability for A

:

Vn « |?[1 - (iff)-] if 71 = 2m
Pn = nil - if 71 = 2m 4- 1.

Probability for B:

Qn - nil - (iff)-]

qn = |«1 - (Ml)-]

if

if

n — 2m
n = 2m 4 1.
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Probability of a tie

:

Tn = (Ml)”" if W = 2m) Tn = fKMf)”" if n = 2m 4- 1.

If n increases indefinitely, Vn converges to 0 and converge to the limits

V ^ I =
l-b

which may be considered as the probabilities for A and B to win if the number of

throws is unlimited.

16. The game known as '4raps^’ is played with two dice, and the caster wins

unconditionally if he produces 7 or 11 points (which are called “naturals”); he loses

the game in case of 2, 3, or 12 points (called “craps”). Biit if he produces 4, 5, 6, 8, 9,

or 10 points, he has the right to cast the dice steadily until he throws the same num-
ber of points he had before or until he throws a 7. If he rolls 7 before obtaining his

point, he loses the game; otherwise, he wins. What is the probability to wdn?
Ans. 24^i9 5 = 0.493.

17- Prove directly the identity in Prob. 15, page 37.

Solution 1. Let

^
b b(b - 1) b(b - l)(b 2)

c c(c — 1) c(c — l)(c — 2)
4 . . .

where 6 is a positive integer and c > b. Then

<p{c, 6) = -[1 + ¥>(c - 1, 6 - 1)1
c

whence 12 3
v?(c, 1) = ~; <p(c, 2) = <p(c, 3) =

c c — 1 c — 2

and in general

<p(c, b)

Taking c = a 4 — 1, we have

1 4 ^(a 4 5 - 1, b)

Solution 2. The polynomial

c - 5 4 1

a A" b

S(x) = 1 + -X +^ + . . .

c c(c 1)

can be presented in the form of a definite integral

Six) = (C + l)£(l - f(l - *))H1 - ^)^d^

whence '

S(l) = (c + 1
) f (1 -
JO c — 6 4 1 a

if c = a 4 5 — 1.

18. Find the approximate expressions for the probabilities F and Q in Prob. 15,

page 36, when b is a large number. Take for numerical application a = 5 = 50.
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Solution. Since P + Q = 1, it suffices to seek the approximate expression for

P - Q. Now

whence

P - Q = af^[l -
2J)»(1 - iY-Hl

To ffiid the approximate expression of this integral, we set

(1 -

whence u can be expressed as a power series in vi

2 46 + a - 1 1262 + (26 -f a - 1)®
,u = V H —. . . .

26+a-l (26+ a -1)3 ^ 3(26 + a - 1)^

Substituting the resulting expression of du/dv and integrating . with respect to v

between limits 0 and oo
,
we obtain for P — Q an asymptotic expansion whose first

terms are

a

26 + a - 1
1

46 + g - 1 g[1262 + (26 + g - l)^] (-1)^

(26 + g - 1)2] (26 + g - 1)5

A more detailed discussion reveals that the error of this approximate formula is less

1 j .X, «W0(g - 1)2 - 66(a - 1) + 3262]
,than a(J^)^+i(^£)““-i and greater than ; provided

(26 +0^ ~ 1)5

6 ^ 12. For g = 6 = 50 the formula yields

P - Q ^ 0.3318; P = 0.6659; Q - 0.3341.
\

References

Jacob Bebnoulli: ‘‘Ars conjectandi/’ 1713.

Abb. de Moivke: Doctrine of Chances/' 3d ed., 1756.

Laplace: '‘Th5orie analytique des probabilitds/' Oeuvres VII, 1886.

J. Bertkand: ^‘Calcul des probabilites/' Paris, 1889.

E. Czubeb: Wahrscheinlichkeitsrechnung/' 1, Leipzig, 1908.

Whitworth: “Choice and Chance/' 5th ed., 1901.

Castelnxjovo: “ Calcolo delle probability/' vol. 1, Bologna, 1925,



CHAPTER III

REPEATED TRIALS

1. In the theory of probability the word ^^triaF^ means an attempt to

produce, in a manner precisely described, an event E which is not certain.

The outcome of a trial is called a success’’ if E occurs, and a '^failure” if

E fails to occur. Por instance, if E represents the drawing of two cards

of the same denomination from a full pack of cards, the ^^trial” consists

in taking any two cards from the full pack, and we have a success or

failure in this trial according to whether both cards are of the same

denomination or not.

If trials can be repeated, they form a “series” of trials. Regarding

series of trials, the following two problems naturally arise:

a. What is the probability of a given number of successes in a given

series of trials? And as a generalization of this problem:

h. What is the probability that the number of successes will be

contained between two given limits in a given series of trials?

Problems of this kind are among the most important in the theory of

probability.

2. Trials are said to be “independent” in regard to an event E if

the probability of this event in any trial remains the same, whether

the results of any number of other trials are known or not. On the other

hand, trials are “dependent” if the probability of E in a certain trial

varies according to the information we have about the outcome of one or

more of the other trials.

As an example of independent trials, imagine that several times in

succession we draw one ball from an urn containing white and black balls

in given proportion, after each trial returning the ball that has been

drawn, and thoroughly mixing the balls before proceeding to the next

trial. With respect to the color of the balls taken, we may reasonably

assume that these trials are independent. On the other hand, if the

bails already extracted are not returned to the urn, the above described

trials are no longer independent. To illustrate, suppose that the urn

from which the balls are drawn, originally contained 2 white and 3 black

balls, and that 4 balls are drawn. What is the probability that the

third ball is white? If nothing is known about the color of the three

other balls, the probability is %. If we know that the first ball is white,

but the colors of the second and fourth balls are unknown, iihis proba-

bility is 34- general, the probability for any ball to be white (or black)

44
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depends essentially on the amount of information we possess about the

color of the other balls. Since the urn contains a limited number of

balls, series of trials of this kind cannot be continued indefinitely.

As an example of an indefinite series of dependent trials, suppose that

we have two urns, the first containing 1 white and 2 black balls, and the

second, 1 black and 2 white balls, and the trials consist in taking one

ball at a time from either urn, observing the following rules: (a) the

first ball is taken from the first urn; (h) after a white ball, the next is

taken from the first urn; after a black one, the next is taken from the

second urn; (c) balls are returned to the same urns from which they were

taken.

Following these rules, we evidently have a definite series of trials,

which can be extended indefinitely, and these trials are dependent.

For if we know that a certain ball was white or black, the probability

of the next ball being white is or %, respectively.

Assuming the independence of trials, the probability of an event E
may remain constant or may vary from one trial to another. If an

unbiased coin is tossed several times, we have a series of independent

trials each with the same probability, 3^, for heads. It is easy to give

an example of a series of independent trials with variable probability for

the same event. Imagine, for instance, that we have an unlimited

number of urns with white and black balls, but that the proportion of

white and black balls varies from urn to urn. One ball is drawn suc-

cessively from each of these urns. Evidently, here we have a series of

trials independent in regard to the white color of the ball drawn, but

with the probability of drawing a ball of this color varying from trial to

trial.

In this chapter we shall discuss the simplest case of series of inde-

pendent trials with constant probability. They are often called “Ber-

noullian series of trials’^ in honor of Jacob Bernoulli who, in his classical

book, ^'Ars conjectandi^^ (1713) made a profound study of such series

and was led to the discovery of one of the most important theorems in

the theory of probability.

3. Considering a series of n independent trials in which the probability

of an event is p in every trial (that of the opposite event F being

g = 1 — p), the first problem which presents itself is to find the proba-

bility that E will occur exactly m times, where m is one of the numbers

0, 1, 2, . . . n. In what follows, we shall denote this probability by
In the extreme cases m — n and m = 0 it is easy to find Tn and To.

When m = n, the event E must occur n times in succession, so that Tn
represents the probability of the compound event EEE . . . E with n
identical components. These components are independent events, since

the trials are independent, and the probability of each of theip is p.



46 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. Ill

Hence, the compound probability is

Tn — V * p ' V ' '
' V {n times)

or

Tn = P".

The symbol To denotes the probability that E will never occur in n

trials, which is the same as to say that F will occur n times in succession.

Hence, for the same reasons as before,

To = 3™ = (1 - V)X^

When m is neither 0 nor n, the event^emisisting in m occurrences of E
can materialize in several mutually>exclusive forms, each of which may
be represented by a definite succps^ion of m letters E and n — m letters F,

For example, if n = 4 and 2, we can distinguish the following mutu-

ally exclusive forms correp^fonding to two occurrences of E:

EEFF, 'EFEF, EFFE, FEEF, FEFE, FFEE,

To find the number of all the different successions consisting of m
letters n — m letters F, we observe that any such succession is

del^i^rlnined as soon as we know the places occupied by the letter E,

fow the number of ways to select m places out of the total number of

n places is evidently the number of combinations out of n objects taken

w at a time. Hence, the number of mutually exclusive ways to have

m successes in n trials is

n{n —
• 1) (n ~ m + 1)

1 • 2 • 3 m

The probability of eaich succession of m letters E and n — m letters F,

by reason of independence of trials, is represented by the product of

m factors p and n — m factors q, and since the product does not depend

upon the order of factors, this probability will be

mrtn—mp^q

for each succession. Hence, the total probability of m successes in n
trials is given by this simple formula:

(1) T„.
1 *2 * 3 *• * M

which can also be presented thus:

V T

(2)

n\

m!(n — m)lP ^
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This second form can be used even for m = 0 or m = n if, as usual,

we assume 0! = 1. Either of the expressions (1) or (2) shows that

may be considered as the coefficient of in the expansion of

(q + pty

according to ascending powers of an arbitrary variable t. In other

words, we have identically

(q + pty = To + Tit + T^t^ + • *
• +

For this reason the function

{q + pty

is called the ^'generating function^^ of probabilities To, Ti, 2
^

2 ,
•• •

By setting i — 1 we naturally obtain

To + Ti + T2 + • •
• + n - 1.

The probability P(fc, 1) that the number of successes m will satisfy

the inequalities (or, simply, the probability of these inequalities)

k ^ m S I

where k and I are two given integers, can easily be found by distinguishing

the following mutually exclusive events:

m ^ k or m = fc + 1, . . . or m I,

Accordingly, by the theorem of total probability,

P(k, 1) = T,+ ^ + Ti

or, using expression (2),

i
'

m = k

In particular, the probability that the number of successes will not

be greater than I is represented by the sum

P(0, 0=3" + + . . . +
n(n-l) {n-l + 1) , ,

+ 1-2 • •
• Z

•

Similarly, the probability that the number of successes in n trials wdll

not be less than I can be presented thus:
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P(Z, n) =
n{n — 1) {n

1-2 1 + !LZJ2 +

+ (n - l){n - I - l)/p

(l+l)il + 2) \q,
+

where the series in. the brackets ends by itself.

5. The application of the above established formulas to numerical

examples does not present any difficulty so long as the numbers with

which we have to deal are not large.

Example 1. In tossing 10 coins, what is the probability of having exactly 5 heads?

Tossing 10 different coins at once is the same thing as tossing one coin 10 times, if all

the coins are unbiased, which is assumed. Hence, the required probability is given

by formula (1), where we must take n = 10, w = 5, and it is

10 • 9 • 8 • 7 • 6 1

1 •2*3 -4 -5 *210

252

10^
- 0.24609.

'Example 2. If a person playing a certain game can win $1 with the probability

14} and lose twenty-five cents with the probability %, what is the probabihty of win-

ning at least 13 in 20 games? Let m be the number of times the game is won. The
total gain (considering a loss as a negative gain) will be

m — i(20 — m) — §m — 5 dollars

and the condition of the problem requires that it should not be less than $3. Hence

Jw — 5 ^ 3,

whence m ^ or, since m is an integer, m ^ 7. That is, in 20 trials an event with

the probability ]4 must happen at least 7 times and the probability for that is:

This sum contains 14 terms; but it can be expressed through another sum containing -

only 7 terms, because

20

20!

^m!(20 - w)I\3
= 1

20!

iml(20 - m)!\3^
m=7 m==0

Using the last expression, one easily gets 0.5207 for the required probability.

6. In the series of probabilities

To, Tt, r2, . . . Tn

for 0, 1, 2, . , . n successes in n trials, the terms generally increase till

the greatest term Tn is reached, and then they steadily decrease. For

instance, if n = 10, p = g = the values of the expression

for m == 0, 1, 2, . . . 10 are
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1, 10, 45, 120, 210, 262, 210, 120, 45, 10, 1

so that Tg is the greatest term. For obvious reasons the number jx (to

which the greatest term Ty. in the series of probabilities To, Ti, . . . Ty

corresponds) is called the “most probable” number of successes.

To prove this observation in general, and to find the rule for obtaining

ix, we observe first that the quotient

Tm+l

I'm -f- 1 j

decreases with increasing m, so that

(a)
To ^ Ti Ti

>
T„

Tn-l

The two extreme terms in (a) are

h
To

np Tn ^ P_

Tn-1 nq

and if n is large enough, the first of them is > 1 and the last <1. To
find exactly how large n must be, we notice that

if

whence

Similarly,

if

whence

To

np > q = 1 — p

n+l>--
V

Ty

Ty-l
< 1

p < nq or 1 — q < nq

n + l>--
Q

Consequently, if n + 1 is greater than both 1/p and 1/q, the first term

in (a) is > 1 and the last term is < 1. As the terms of (a) form a decreas-

ing sequence, there must be a last term which is ^1. Let it be

Ty

T.y-l

To ^ T,
^ T

^
X y

T ^ 1
y-l

Then
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and

^At4-2 > • * >
Tn

Tn-l

or, which is the same,

n < < ^2 < • •
• < ^ T,

Tfi > Tpt-f-i > Tfj.-^2 ^ * *
’ ^Tn-

In other words, the sequence of probabilities increases till the greatest

term T^, is reached and steadily decreases from then on. Besides

there may be another greatest term namely, when = Ty.;

but all the other terms are certainly less than Ty, The number is

perfectly determined by the conditions

Ty _n - 11 + Ip ^ Ty+i _ n - }ip ^ .

Ty-i H g
= Ty fi + lq^ ^

which are equivalent to the two inequalities

(n + l)p ^ flip + g), np - q < flip + g).

These in turn can be presented thus:

fi ^ in + l)p < p + 1

and show that p is uniquely determined as the greatest integer contained in

in + l)p. If in + l)p is an integer, then p — in + l)p and Ty = Ty^i.

That is, there are two greatest terms if, and only if, in + l)p is an

integer.

Let us consider now what happens if

^+1^- or n + 1
V ~ q

In the first case, all the terms in (a) are less than 1 with the single excep-

tion of the first term Ti/Tq which may be equal to 1; namely, when

n + 1 — Consequently,

To^ Tl> T2> • — > Tn

so that To is the greatest term. If (n + l)p < 1 the greatest integer

contained in in + l)p is 0, and there is only one greatest term To. If,

however, (n + l)p = 1, there are two terms To = Ti greater than
others.

If (n + l)g ^ 1, all the terms in series (a) are > 1 with the exception
of the last term, which may be equal to 1; namely, when (n + l)g = 1.

Hence,

To < Ti < . . . < Tn-l ^ Tn
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so that Tn is the greatest term, and the preceding term Tn-
to it only if (n + 1)^ = 1. Now the condition

{n + l)q ^ 1

is equivalent to

(n + l)p ^ n.

On the other hand, because p < 1,

(n + l)p < n + 1.

1 can be equal

Therefore n is the greatest integer contained in (n + l)p.

Comparing the results obtained in the last two cases (excluded at

first) with the general rule, we see that in all cases the greatest term

Tf, corresponds to

At = [(?^ + l)p].

If (n + l)p is an integer, then there are two greatest terms and
This rule for determining the most probable number of successes is very

simple and easy of application to numerical examples.

Example 1. Let n = 20, p ^ Then (n + l)p = 8.4, and the greatest

integer contained in this number is m = 8. Hence, there is only one most probable

number of successes = 8 with the corresponding probabihty

Ts
8!12!\5/ \5/

0.1797.

Example 2. Let w = 110, p = q - %, and (n + l)p = 37, an integer.

Consequently, 36 and 37 are the most probable numbers of successes with the corre-

sponding probability

Tu = T37
37173 iVs/ W 0.0801.

7. When n, m, and n — m are large numbers, the evaluation of

probability Tm by the exact formula

71^

ml(n — m)l^ ^

becomes impracticable and it is necessary to resort to approximations.

For approximate evaluation of large factorials we possess precious means
in the famous ^'Stirling formula.^^ Referring the reader to Appendix I

where this formula is established, we shall use it here in the following

form:

log x! = log\/2TX + X log X — X + co(x)

12(x + I)
< “^^) <

where
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In the same appendix the following double inequality is proved

:

“
121

^ ^ 12n + 6
“ 12m + 6

“

1

121 + 6
'

Now from Stirling’s formula

n! == 's/'l'Kn

and two similar expressions for m\ and {n — w)! follow. Substituting

them into !Fm, we get two limits

(3)

(4)

where

Tm ^

Tra > I

4

4

n
2Trm{n — m)

n

2Tm(n — m)

(npY/ nq V"
\m / \n — m)

\m / \n — m)

1 1 1

^ = gl2n4-6 12m+6 12(n--m)4-6

_1 1 1

1
gl2n 12m 12 (n— m)^

When n, m, n m are even moderately large k and I differ little from

each other.

Inequalities (3) and (4) then give very close upper and lower limits

for Tm- To evaluate powers

with large exponents, sufficiently extensive logarithmic tables must be

available. If such tables are lacking, then in cases which ordinarily

occur when ratios np/m and nqf{n — m) are close to 1, we can use

special short tables to evaluate logarithms of these ratios or else resort to

series.

8. Another problem requiring the probability that the number of

successes will be contained between two given limits is much more

complex in case the number of trials as well as the difference between

given limits is a large number. Ordinarily for approximate evaluation

of probability under such circumstances simple and convenient formulas

are used. These formulas are derived in Chap. VII. Less known is

the ingenious use by Markoff of continued fractions for that purpose.

It suffices to devise a method for approximate evaluation of the

probability that the number of successes will be greater than a given

integer Iwhich can be supposed >np. We shall denote this probability by
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P(Z), A similar notation Q{T) will be used to denote the probability

that the number of failures is >Z where again Z > nq. The probability

P(k, 1) of the inequalities k m Si can be expressed as follows:

P(Zc, Z) = 1 -- P(Z) - Q{n - k)

iil > np and h < np;

P(k, Z) = P(k - 1) - P(Z)

if both k and Z are > np; and finally

P(k, Z) = Q(n - Z - 1) - Q(n - k)

if both k and Z are < np.

For P(Z) we have the expression

P(l) =
ni

(Z + l)!(n~-Z l)f ^ 1 + n — I

1 + 2

{n -- I — l){n — Z — 2)(p
(Z + 2)(Z + 3)

2

f
I +

The first factor

n\
- /v) —

1

(Z + l)!(n - I
- l)r ^

can be approximately evaluated by the method of the preceding section.

The whole difficulty resides in the evaluation of the sum

>S = 1 -|~
Z -- 1 ^ (n — Z — l)(n — Z 2)(

p

Z + 2 ^ ‘ (i + 2)(Z + 3)

which is a particular case of the hypergeometric series

+

r(», :») - 1 +^ + +
l-T 1 • 2y{y + 1 )

In fact

<
pi — n ~]r I 1, 1, Z “h 2

Now, owing to this connection between S and hypergeometric series, /S

can be represented in the form of a continued fraction. First, it is

easy to establish the following relations:

F{a, ^ + 1, r + 1, a:) = F{<x, /3, 7,a:) +

+ ^^^^Fia + l,0 + l,y + 2,x)

F(a + 1, y + I, x) = F(a, y,x) +
0(y — a)+ X
7(7 + 1)

F{a + 1, ;8 + 1, 7 + 2, x).
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Substituting a + n, ^ y + 2n and a + n, ^ + n + Ij y + 2n + 1,

respectively, for a, /3, y in these relations and setting

^271 = F{a + n, n, y 2n, x)]

F(a + n, + n + l,y + 2n + 1, x)

_ (|8 + n){'Y — a; + n) _ (a + n){y — P + n)

(7 + 2ft)(r + 2ra - 1)’ (7 + 2k)(7 + 2n + 1)

for brevity, we have

Jlo = Xi — CI1XX2

Xi = X2 — ci^xXz

whence
Xtu—I = - drn^X 7714-

1

dm—lX

~T~

In our particular case

Xi = F{— n + Z -h 1, 1, Z ”1- 2, x)j Xq = 1

and d^n—u—i ~ 0.

Hence, takiiig ^ and introducing new notations, we have a

finite continued fraction

On—Z—

1

I dn—l—1

where

i'fi\ - (^ - ^ ^ fc(n + h)p
ya) cj - _ \){l + 2h)q’ {I + 2h){l + 2k + l)g'

Every one of the numbers Ci will be positive and < 1 if this is true for

Cl. Now

OLziziJ)? < 1
il + 2)q

if Z > np, and that is exactly what we suppose. The above continued
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fraction can be used to obtain approximate values of S in excess or in

defect, as we please. Let us denote the continued fraction

Cfc

1 Cfc-j-i

by ojfc. Then

0 < COfc < Cfc,

which can be easily verified. Furthermore,

0)1
Cl

1 +
= £2

1 +

and in general

Ck
CO. = T + dk

0)k+l

Having selected k, depending on the degree of approximation we
desire in the final result (but never too large; ^ = 5 or less generally

suffices) . we use the inequality

0 < 0)^+1 < Ck+i

to obtain two limits in defect and in excess for w*. Using these limits, we
obtain similar limits for cck-i, o)k-2 j

ook^z, . . . and, finally, for coi and S.

The series of operations will be better illustrated by an example.

9. Let us find approximately the probability that in 9,000 trials an

event with the probability p
— will occur not more than 3,090 times

and not less than 2,910 times. To this end we must first seek the

probability of more than 3,090 occurrences, which involves, in the first

place, the evaluation of

T3091

9000!

309115909! \z) \3/

By using inequalities (3) and (4) of Sec. 7, we find

0.011286 < Tzon < 0.011287.

Next we turn to the continued fraction to evaluate the sum S. The
following table gives approximate values of Cl, C2 ,

. . . Ceanddi, ^2 . . . ds

to 5 decimals and less than the exact numbers



56 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. Ill

n Cn dn

1 0.95553 0.00047

2 0.95444 0.00094

3 0.95335 0.00140

4 0.95227 0.00187

5 0.96119 0.00234

6 0.95010

We start with the inequalities

0 < C06 < 0.95011

and then proceed as follows:

1.00234 < 1 + -A_ < 1.04711; 0.90839 < < 0.94898
1 — C06

1.02041 < 1 + --- < 1.03685; ^ 0.91842 < coi < 0.93324
1 — C05

1.01716 < 1 + < 1-02113; 0.93362 < C03 < 0.93728
1 — 0)4

1.01416 < 1 + _A_ < 1.01514; 0.94020 < co^ < 0.94113
1 — 0)3

1.00785 <1 + < 1.00816; 0.94779 < wi < 0.94810
1 — 0)2

1 ^ o ^
1

0.05221
^ ^ 0.05190

0.02161 < STzan < 0.02175.

Hence, we know for certain that

0.02161 < P(3,090) < 0.02175.

By a similar calculation it was found that

0.02129 < Q(6,090) < 0.02142,

so that

0.04290 < P(3,090) + Q(6,090) < 0.04317.

The required probabilityP that the number of successes will be contained

between 2,910 and 3,090 (limits included) lies between 0.95683 and
0.95710 so that, taking P = 0.9570, the error in absolute value will be
less than 1,7 X 10”^.

Problems for Solution

1. What is the probability of having 12 three times in 100 tosses of 2 dice?

C?oo(^)«(||)97 = 0.2257.
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2.

What is the probability for an event E to occur at least once, or twice, or three

times, in a series of n independent trials with the probability p? ilns.

(c) 1 - (1 - p)- 1 + (?^ ~ 2)p +
(n — l)(n ~ 2)

-p^

3. What is the probability of having 12 points with 2 dice at least three times in

100 throws? Ans. 0.528.

4. In a series of 100 independent trials with the probability }i, what is the most
probable number of successes and its probability? Ans. m = 33; T^z — 0.0844.

Note: Log 100! = 157.97000; Log 671 = 94.56195; Log 331 = 36.93869.

6.

A player wins $1 if he throws heads two times in succession; otherwise he loses

25 cents. If this game is repeated 100 times, what is the probability that neither his

gain nor loss will exceed $1? Or $5? Ans.

Q>)

1001

201801

(a)
1001

201801
- 0.0493;

80 80-79 80-79-78 80-79-78-77

63 63 • 66 63 - 66 • 69 63 • 66 - 69 • 72

60 60-57 60-57-54 60 - 57 - 54 - 51

81 81 • 82 81 - 82 • 83 81 - 82 • 83 • 84
= 0.4506

NpTE: Log 201 = 18.38612; Log 80! = 118.85473.

Show that in a series of 2s trials with the probability the most probable num-
ber of successes is 5 and the corresponding probability

Show also that

Hint:

Ts =

Ts <

Ts <

1 • 3 - 5 - •
- (2s - 1)

2-4-6

1

2s

\/2s + 1

2 • 4 • 6 • • • 2s

3 • 5 7 •
• (2s + 1)'

7. Prove the following theorem : If P and P' are probabilities of the most probable

number of successes, respectively, in n and n -t 1 trials, then P' ^ P, the equality

sign being excluded unless (?^ + l)p is an integer.

8. Show that the probability Tn corresponding to the most probable number of

successes in n trials, is asymptotic to (27mpg)“H, that is,

lim T’m'v/27r7ip^ = 1 as n —> oo

.

9.

When p = }i, the following inequality holds for every m;
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10. What is the probability of 215 successes in 1,000 trials Up =
Ans. 0.0154.

11. What is the probability that in 2,000 trials the number of successes will be

con-^ned between 460 and 540 (limits included) if 2?
= Aws. 0.964.

Two players A and B agree to play until one of them wins a certain number of

games, the probabilities for A and B to win a single game being p and g = 1 — p.

However, they are forced to quit when A has a games still to win, and B has h games.

How should they divide their total stake to be fair?

This problem is known as “probleme de parties,” one of the first problems on

probability discussed and solved by Fermat and Pascal in their correspondence.

Solution 1. Let P denote the probability that A will win a remaining games before

B can win h games, and let Q = 1 — F denote the probability for B to win b games
before A wins a games. To be fair, the players must divide their common stake M in

the ratio P:Q and leave the sum MP to A and the sum MQ to B.

To find P, notice that A wins in the following mutually exclusive ways:

a. If he wins in exactly a games; probability p^.

a
b. If he wins in exactly a -j- 1 games; probability

c. If he wins in exactly a }- 2 games; probability
a(a + 1)

n. If he wins in exactly a + 5 — 1 games; probability

u(a "hi) * *
* {u b — 2)

1*2*3 • •
• (5 -1)

.
^aqb-

Consequently

p := pa

and similarly

Q

a a(a + 1) , + • +
a(a -f- 1) • •

* (a + 6 — 2)

1 -2 -

. .
^ + 1) o +••••+ Hb 4- 1)

(&-1)

(6 + a - 2)

1 *2 (a ~ 1)

.pa-

Show directly that P 4- 0 = 1.

Hint: 4”— — 0.
dp dp

Solution 2. The same problem can be solved in a different way. Whether A ox B
wins will be decided in not more than a 4- b — 1 games. Now if the players continue

to play until the number of games reaches the limit ct 4" & — 1, the number of games

won by A must be not less than a. And conversely, if this number is not less than a, A
will win a games before B wins 6 games. Therefore, P is the probability that in

Q 5—1 games A wins not less than a times, or

P = (a 4- h - 1)1

- 1 )

01
1 4. tiLl 2 4-

a 4" 1 2 (o 4* l)(ct + 2)

jb - 1)(6 •

(a4-l)(a+2)

Show directly that both expressions for P are identical.

(a 4-h - 1)'



Hint: Proceed as before.

13.

Prove the identity

REPEATED TRIALS 59

n n{n — 1) „ „ , .
n(n — 1) • *

• (n — A; + 1)
4_ ^ "

77^ + • •
• + %

J^^^n-A~l(X _ xYdx

— x)^dx

H^int : Take derivatives with respect to p.

14.

A and B have, respectively, n 1 and n coins. If they toss their coins

simultaneously, what is the probability that (a) A will have more heads than P?
(Jb) A and B will have an equal number of heads? (c) B will have more heads than A ?

Solution, a. Let Pn be the probability for A to have more heads than B, This

probability can be expressed as the double sum

n -|-1 71

a: = 1 a = 0

Considering the coefficient of P in

(1 +

we have

Hence

(1 + 1)^

2 riot+x/^cc

x = 0

n+ 1

22n 1
fin+x _
2»+l 22n+l 2

h. The probability Qn for A and B to have an equal number of heads is

1
pn
^2n4-l

c. The probability Rn for B to have more heads than A is

p _ -* ^2n+l

2 22»1+1

'

15.

If each of n independent trials can result in one of the m incompatible events

Eij E^t . . . Em with the respective probabilities

Ply P2, . . . Pm; (Pl + P2 + * •
• 4- Pm = 1),

show that the probability to have h events Eij h events E2 y
. . . Im events Em where

Zi -f ^3 + • • • + is given by



CHAPTER IV

PROBABILITIES OF HYPOTHESES AND BAYES’ THEOREM

1. The nature of the problems with which we deal in this chapter may
be illustrated by the following simple example: Urns 1 and 2 contain,

respectively, 2 white and 3 black balls, and 4 white and 1 black balls.

One of the urns is selected at random and one ball is drawn. It happens

to be white. What is the probability that it came from the first urn?

Before the ball was drawn and its color revealed, the probability that the

first urn would be chosen had been 1/2; but the indication of the color

of the ball that was drawn altered this probability. To find this new
probability, the following artifice can be used:

Imagine that balls from both urns are put together in a third urn.

To distinguish their origin, balls from the first urn are marked with 1

and those from the second urn are marked with 2. Since there are 5

balls marked with 1 and the same number marked with 2, in taking one

ball from the third urn we have equal chances to take one coming from

either the first or the second urn, and the situation is exactly the same
as if we chose one of the urns at random and drew one ball from it.

If the ball drawn from the third urn happens to be white, this can happen
in 2 + 4 = 6 equally likely cases. Only in 2 of these cases will the

extracted ball have the mark 1. Hence, the probability that the white

ball came from the first urn is % = 3^^.

The success of this artifice depends on the equality of the number of

balls in both urns. It can be applied to the case of an unequal number
of balls in the urns, but with some modifications; however, it seems

preferable to follow a regular method for solving problems like the

preceding one.

2, The problem just solved is a particular case of the following funda-

mental:

Problem 1. An event A can occur only if one of the set of exhaustive

and incompatible events

Bij ... Bn

occurs. The probabilities of these events

(Rx), {B,), . . . {Bn)

corresponding to the total absence of any knowledge as to the occurrence
60
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or nonoGcurrence of A, are known. Known also^ are the conditional

probabilities

(A, Bi)] i = 1, 2, . . . n

for A to occur, assuming the occurrence of Bi. How does the proba-

bility of Bi change with the additional information that A has actually

happened?

Solution. The question amounts to finding the conditional proba-

bility {Bi, A). The probability of the compound event ABi can be

presented in two forms

{AB^) = {Bi){A, Bi)

or

{AB,) = {A){Bi, A).

Equating the right-hand members, we derive the following expression

for the unknown probability {Bi, A):

/D
{Bi, A) -

Since the event A can materialize in the mutually exclusive forms

ABi, AB<2,, . . . ABnj

by applying the theorem of total probability, we get

{A) = {Bi){A, Bi) + {B,){A, S 2) + • • • + {BrXA, B^).

It suffices now to introduce this expression into the preceding formula for

{Bi, A) to get the final expression

(1) (B’ A) = (^i){A, Bi)

/
' ^ ^ 2) + • •

* + {Bn){A, Bn)

'^This formula, when described in words, constitutes the so-called

Bayes' theorem." However, it is hardly necessary to describe its

content in words; symbols speak better for themselves. For that

reason, we prefer to speak of Bayes’ formula rather than of Bayes'

theorem. Bayes' formula is also known as the ^formula for probabilities

of hypotheses." (The reason for that name is that the events ^ 2 ,
. . ,

Bn may be considered as hypotheses to account for the occurrence of JL.)

It is customary to speak of probabilities

{Bf), {Bf), . . , {Bn)

as a gmri probabilities of hypotheses

.
JBi, . Bn,

while probabilities

{Bi, A)\ i = 1, 2, . . . n
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are called a posteriori probabilities of the same hypotheses.

3. A few examples will help us to understand the meaning and the

use of Bayes^ formula.

Example 1. The contents of urns 1, 2, 3, are as follows:

,1 white, 2 black, 3 red balls

2 white, 1 black, 1 red balls

4 white, 5 black, 3 red balls

One urn is chosen at random and two balls drawn. They happen to be ’white and red.

"What is the probabihty that they came from urn 2 or 3 ?

Solution. The event A represents the fact that two balls taken from the selected

urn were of white and red color, respectively. To account for this fact, we have three

hypotheses: The selected um was 1 or 2 or 3. We shall represent these hypotheses in

the order indicated by Bi, B 2 f
Bz. Since nothing distinguishes the uims, the probabili-

ties of these hypotheses before anything was known about A are
^

(Bi) = {B2) = (Ba) = |.

^ The probabilities of A, assuming these hypotheses, are

(A, B^) = h (A, B 2) = h (A, Bz) -

It remains now to introduce these values into formula (1) to have a posteriori prob-

abilities

(B 2,
A) -

{Bz, A) =

i J i •

i * i + i * '3' “h i '

55

118

^ 30

A 118

• A

and also, naturally.

\Ai

(Si, A) = 1 - (B„ A) - (,B„ A) =

Example 2. It is known that an urn containing altogether 10 balls was filled in

the following manner: A coin was tossed 10 times, and according as it showed heads

or tails, one white or one black ball was put into the urn. Balls are drawn from this

urn one at a time, 10 times in succession (always being returned before the next draw-

ing) and every one turns out to be white. What is the probability that the urn con-

tains nothing but white balls?

Solution. The event A consists in the fact that in 10 independent trials with a
definite but unknown probability, only white balls appear. To account for this fact,

we have 10 hypotheses regarding the number of white balls in the urn; namely, that

this number is either 1, or 2, or 3, . . . or 10. The a priori probability of the hypo-
thesis Bi that there are exactly i white balls in the urn, according to the manner in

which the urn was filled, is the same as the probability of having i heads in 10 throws;

that is,

*!(10 -
* = 1

,
2 ,

. . . 10.

Granted the hypothesis Bt, the probability of A is

I
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The problem requires us to find (Bio, A), The expression of this probability immedi-

ately results from Bayes' formula:

(Bio, A) —

The denominator of this fraction is

Hence •

14.247.

(Bio, A) = 0.0702.

This probability, although still small, is much greater than Ho 24 >
the a priori prob-

ability of having o^ly white balls in the urn.

If, instead of lO drawings, m drawings have been made and at each drawing white

balls appeared, th^ probabihty (Bio, A) would be given by

(Bio, A)
1

10

The denominator of this formula can be presented thus:

Now

and so

Hence

10

24-foT
i — 0

(‘-s)

10 10

/ . \ w mi / rn\ 10

i~0 i—0

1+e '

(Bio, A) >\l+e
This shows that with increasing m the probability (Bio, A) rapidly approaches 1.

For instance, if w == 100

(Bio, A) > (1 + > (1.0000454)-io > 0.99954.

Thus, after 100 drawings producing only white balls, it is almost certain that the

urn contains nothing but white balls—a conclusion which mere common sense would
dictate.

Example 3. Two urns, 1 and 2, contain respectively 2 white and 1 black ball,

and 1 white and 5 black balls. One ball is transferred from urn 1 to urn 2 and then-

one ball is drawn from the latter. It happens to be white. What is the probability

that the transferred ball was black?
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Solution. Here we have two hypotheses: Bi^ that the transferred ball was black,

and Bo, that it was white. The a priori probabilities of these hypotheses are

{B^) - h (B.) - f

The probabilities of drawing a white ball from urn 2, granted that Bi or B 2 is true,

are:

(A, B^) = f, (A, B 2) = r

The probability of Bi, after a white ball has been drawn from the second urn,

results from Bayes’ formula:

(Bi, A)
+ 1

1

5
*

4. Problem 2. Retaining the notations, conditions, and data of

Prob. 1, find the probability of materialization of another event C
granted that A has actually occurred. Conditional probabilities

(C, ABi); t = 1, 2, . . . n

are supposed to be known.

Solution. Since the fact of the occurrence of A involves that of one,

and only one, of the events

5i, R2 ,
. . . Bn,

the event C (granted the occurrence of A) can materialize in the following

mutually exclusive forms

CBi, CB2, . . . CBn.

Consequently, the probability (C, A) which we are seeking is given by

(C, A) = {CB^, A) + (CR 2,
A) + V

•
• + {CBn, A).

Applying the theorem of compound probability, we have

{CBi, A) = (Hi, A)(C, BiA)

and

(C, A) = (Bi, A)(C, ABO + (B2 ,
A)(C, AB^) + * *

• +
(B., A)(C, AB.).

It sufiices now to substitute for

(Bi,A)

its expression given by Bayes' formula, to find the final expression

X iBdiA, B,)iC, AB,)

X(B,)(A,B,)

(2)



Sec. 4] PROBABILITIES OF HYPOTHESES AND BAYES’ THEOREM 65

It may happen that the materializatiGii of hypothesis Bi makes C
independent of A

;
then we have simply

(C, ABi) = (C, Bi)

and instead of formula (2), we have a simplified formula

2 B.)(C, 5,)

(3) (C, A) = =

The event C can be considered in regard to A as Si future event. For

that reason formulas (2) and (3) express probabilities of future events.

For better understanding of these commonly used technical terms, we
shall consider a simple example.

•
^^xample 4. From an urn containing 3 white and 5 black balls, 4 balls are trans-

fferred into an empty urn. From this urn 2 balls are taken and they both happen to

be white. What is the probability that the third ball taken from the same urn, will

‘ be white?

Solution, (a) Let us suppose that the two balls drawn in the first place are returned

to the second urn. Analyzing this problem, we distinguish first the following hypoth-

eses concerning colors of the 4 balls transferred from the first urn. Among them, there

are necessarily 2 white balls. Hence, there are only two possible hypotheses

:

J5i: 2 white and 2 black balls;

B-zi S white and 1 black ball.

A priori probabilities of these hypotheses are

n2 /nf2

/D \ _ ^3 ^5

Ĉl • Cl
(B,) =

Ct

3
7'

Ja

The event A consists in the white color of both balls drawn from the second urn

The conditional probabilities (A, Bi) and {A, BI) are

(A, Bi) = i; (A, BI) = f.

The future event C consists in the white color of the third ball. Since the 2 balls

drawn at first are returned, C becomes independent of A as soon as it is known which
one of the hypotheses has materialized. Hence

(C, ABi) = (C, Bi) = I

(C, ABI) == (C, B2) = f.

Substituting these various numbers in formula (3), we find that
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(b) If the two balls drawn in the first place are not returned, we have

(C, ABi)= 0, iC,AB,)=l-

Then, making use of formula (2),

(C, A) T¥ • I • I

f

1

6
'

6. The following problem can easily be solved by direct application

of Bayes’ formula.

Problem 3. A series of trials is performed, which, with certain

additional data, would appear as independent trials in regard to an event

E with a constant probability p.

Lacking these data, all we know is that the unknown probability p
must be one of the numbers

Ph P2, - . . pk

and we can assume these values with the respective probabilities

aiy ^2, . . . ah.

In n trials the event E actually occurred m times. What is the proba-

bility that p lies between the two given limits a and ^ (0 ^ a < 13 ^ 1),

or else, what is the probability of the following inequalities

:

a ^ p g /3?

A particular case may illustrate the meaning of this problem. In a

set of N urns, Nai urns have white balls in proportion pi to the total

number of balls; Na^ urns have white balls in proportion p 2 ;
. . . Nak

urns have white balls in proportion pk. An urn is chosen at randonf and
n drawings of one ball at a time are performed, the ball being returned

each time before the next drawing so as to keep a constant proportion

of white balls. It is found that altogether m white balls have appeared.

What is the probability that one of the Nai urns with the proportion

Pi of white balls was chosen? Evidently this is a particular case of the

general problem, and here we possess knowledge of the necessary data,

provided that the probability of selecting any one of the urns is the same.

Solution. We distinguish k exhaustive and mutually exclusive

hypotheses that the unknown probability is pi, or p 2 ,
. . . or pk. The

a priori probabilities of these hypotheses are, respectively, ai, a2 ,
. . . ak.

Assuming the hypothesis p = p^, the probability of the event E occurring

m times in n trials is

CjpT(l - piY-^,

Now, after E has actually happened m times in n trials, the a pos-
teriori probability of the hypothesis p = p^, by virtue of Bayes’ formula,
will be
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k

- ViY-’”

or, canceling

aip^il -
k

2a:<p?(l -
4 = 1

Now, applying the theorem of total probability, the probability P of the

inequalities

will be given by

Oi ^ p ^

^ _ i:>aip^{i - piY^-^
^ k

-
Pi)’*-™

where the summation in the numerator refers to all values of pi lying

between a and |d, limits included.

An important particular case arises when the set of hypothetical

probabilities is

Pi = P2 = * *
• Pft = 1

and the a priori probabilities of these hypotheses are equal:

1
ai = a^ = * * ' = a* = 7*

Then the fraction 1/k can be canceled in both numerator and denomina-
tor. The final formula for the probability of the inequalities

a S p S &
will be

(5) p = 2pT(l - pQ"-™

4 = 1

summation in numerator being extended over all positive integers i

satisfying the inequalities

koi ^ i S

In the limit, when k tends to infinity, the a priori probability of the

inequalities

a ^ p ^ P
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iJi"

i

I

[fi;:

i.Vi

il-

ls given simply by the length — a oi the interval (a, /5). The a pos-

teriori probability of the same inequalities is obtained as the limit of

expression (5). Now, as oo^ the sums

i^koc

1
k

tend to the definite integrals

— xY^^dx

and

and

2 (0
’

i == 1

x^(l — xY ^dx.

Therefore, in the limit, the a posteriori probability of the inequalities

a S V S ^

is expressed by the ratio of two definite integrals

J^x^(l - xY~^dx
(6) P =

xY~'^dx

This formula leads to the following conclusion: When the unknown
probability p of an event E may have any value between 0 and 1 and the a

priori probability of its being contained between li7nits a and p is ^ — a,

then after n trials in which E occurred m times, the a posteriori probability

of p being contained between a and P is given by formula (6).

6. Problem 4. Assumptions and data being the same as in Prob. 3,

find the probability that in ni trials, following n trials, which produced

E m times, the same event will occur mi times.

Solution. It suffices to take in formula (3)

and

(Bi) = ap, {A, Bi) = C^pril -

(C, Bi) =

to find for the required probability this expression:

(7)

Supposing again

_ p.)

Q =

t = 1

1 2
Pl =

l’
P2 = Pk = 1

1
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and letting k

(8)

=0 formula (7) in the limit becomes

Q - C;;f (1 —

— xy-^dx

This formula leads to the following conclusion: When the unknown
probability p of an event E may have any value between limits 0 and 1

and the a priori probability of its being contained between a and /5 is

P — a (so that equal probabilities correspond to intervals of equal length),

the probability that the event E will happen mi times in ni trials following

n trials which produced E m times is given by formula (8).

In particular, for ni = mi = 1 (evaluating integrals by the known
formula), we have

Q =
m + 1

n + 2

This is the much disputed ^Taw of succession’’ established by Laplace.

7. Bayes’ formula, and other conclusions derived from it, are neces-

sary consequences of fundamental concepts and theorems of the theory of

probability. Once we admit these fundamentals, we must admit Bayes’

formula and all that follows from it.

But the question arises: When may the various results established

in this chapter be legitimately applied? In general, they may be applied

whenever all the conditions of their validity are fulfilled; and in some
artificial theoretical problems like those considered in this chapter, they

unquestionably are legitimately applied. But in the case of practical

applications it is not easy to make sure that all the conditions of validity

are fulfilled, though there are some practical problems in which the use

of Bayes’ formula is perfectly legitimate.^ In the history of probability

it has happened that even the most illustrious men, like Laplace and
Poisson, went farther than they were entitled to go and made free use

principally of formulas (6) and (8) in various important practical prob-

lems. Against the indiscriminate use of these formulas sharp objections

have been raised by a number of authors, especially in modern times.

The first objection is of a general nature and hits the very existence

of a priori probabilities. If an urn is given to us and we know only that

it contains white and black balls, it is evident that no means are available

to estimate a priori probabilities of various hypotheses as to the propor-

tion of white balls. Hence, critics say, a priori probabilities do not exist

at all, and it is futile to attempt to apply Bayes’ formula to an urn with

an unknown proportion of balls. At first this objection may appear

^ One such problem can be found in an excellent book by Thornton C. Fry, “Prob-

ability and Its Engineering Uses,^^ New York, 1928.
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very convincing, but its force is somewhat lessened by considering the

peculiar mode of existence of mathematical objects.

Some property of integers, unknown to me, is not present in my
mind, but it is hardly permissible to say that it does not exist; for it does

exist in the minds of those who discover this property and know how to

prove it.

Similarly, our urn might have been filled by some person, or selected

from among urns with known contents. To this person the a priori

probabilities of various proportions of white and black balls might

have been known. To us they are unknown, but this should not prevent

us from attributing to them some potential mode of existence at least as

a sort of belief.

To admit a belief in the existence of certain unknown numbers is

common to all sciences where mathematical analysis is applied to the

world of reality. If we are allow^ed to introduce the element of belief

into such ^^exact^^ sciences as astronomy and physics, it would be only

fair to admit it in practical applications of probability.

The second and very serious objection is directed against the use of

formula (6), and for similar reasons against formula (8). Imagine,

again, that we are provided with an urn containing an enormous number
of white and black balls in completely unknown proportion. Our aim
is to find the probability that the proportion of white balls to the total

number of balls is contained between two given limits. To that end, we
make a long series of trials as described in Prob. 5 and find that actually

in n trials, white balls appeared m times. The probability we seek would
result from Bayes’ formula, provided numerical values of a priori proba-

bilities, assumed on belief to be existent, were known. Lacking such

knowledge, an arbitrary assumption is made, namely, that all the a

priori probabilities have the same value. Then, on account of the

enormous number of balls in our urn, formula (6) can be used as an

approximate expression of P. It can be shown that, given an arbitrary

positive number e, however small, the probability of the inequalities

e < p < he
n ^ n

can be made as near to 1 as we please by taking the number of trials

greater than a certain number Nie) depending upon e alone. In other

words, with practical certainty we can expect the proportion of white

balls to the total number of balls in our urn to be contained within

arbitrarily narrow limits

and he.
n

m
n

€
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j

A conclusion like this would certainly be of the greatest importance.

I

’

.
But it is vitiated by the arbitrary assumption made at the beginning.

;;

The same is true of formula (8) and of Laplace’s ^^law of succession.”

j
The objection against using formulas (6) and (8) in circumstances where

we are not entitled to use them appears to us as irrefutable, and the

numerical applications made by Laplace and others cannot inspire much
confidence.

As an example of the extremes to which the illegitimate use of formulas

f (6) and (8) may lead, we quote from Laplace:

En faisant, par exemple, remonter la plus ancienne 6poque de Thistoire k

cinq mille ans, ou 4 1,826,213 jours, et le Soleil s’4tant lev4 constamment, dans

^ cet intervalle, 4 chaque revolution de vingt-quatre heures, il y a 1,826,214 4 parier

contre un qu’il se levera encore demain.

It appears strange that as great a man as Laplace could make such a

statement in earnest. However, under proper conditions, it would

not be so objectionable. If, from the enormous number + 1 of

urns containing each N black and white balls in all possible proportions,

one urn is taken and 1,826,213 balls are drawn and returned, and they

f
all turn out to be white, then nobody can deny that there are very nearly

^ 1,826,214 chances against one that the next ball will also be white.

f Problems for Solution

1

1. Three urns of the same appearance have the following proportions of white and

j

blackballs:

I Urn 1: 1 white, 2 black balls

I
Urn 2: 2 white, 1 black ball

Urn 3: 2 white, 2 black balls

One of the urns is selected and one ball is drawn. It turns out to be white. What
is the probability that the third urn was chosen? Ans.

2. Under the same conditions, what is the probability of drawing a white ball

? again, the first one not having been returned? Ans.

1;

3. An urn containing 5 balls has been filled up by taking 5 balls from another urn,

which originally had 5 white and 5 black balls. A ball is taken from the first urn, and
it happens to be black. Wliat is the probability of drawing a white ball from among
the remaining 4? Ans. %.

!; 4. From an urn containing 5 white and 5 black balls, 5 balls are transferred into an
empty second urn. From there, 3 balls are transferred into an empty third urn and,

finally, one ball is drawn from the latter. It turns out to be white. What is the

probability that all 5 balls transferred from the first urn are white? Ans. 4426-
6. Conditions and notations being the same as in Prob. 3 (page 66), show that the

probability for an event to occur in the (n + l)st trial, granted that it has occurred
' in all the preceding n trials, is never less than the probability for the same event to

occur in the nth trial, granting that it has occurred in the preceding n — 1 trials.

Hint: it must be proved that

h k j h
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For that purpose, use Cauchy’s inequality

(

k \ 2 k h

g • ^7,-.

/ i==l i = l

6.

Assuming that the unknown probability p of an event E can have any value

between 0 and 1 and that the a priori probability of its being contained in the interval

(a, jS) is equal to the length of this interval, prove the following theorem: The prob-

ability a posteriori of the inequality

p ^ cr

after E has occurred m times in n trials is equal to the probability of at least m 4- 1

successes in n -j- 1 independent trials with constant probability cr. (See Prob. 13,

page 59.)

7. Assumptions being the same as in the preceding problem, find approximately

the probability a posteriori of the inequalities

^ P ^ Uh
it being known that in 200 trials an event with the probability p has occurred 105

times. Arts. Using the preceding problem and applying Markoff’s method, we find

P = 0.846.

8 . An urn contains N white and black balls in unknown proportion. The number
of white balls hypothetically may be

0, 1, 2, ... iV

and all these hypotheses are considered as equally likely. Altogether n balls are

taken from the urn, m of which turned out to be white. Without returning these

balls, a new group of ni balls is taken, and it is required to find the probability that

among them there are nti white balls. Naturally, the total number of balls is so

large as to have n A- < N. Ans. The required probability has the same expression

0
,

I — x)^~^dx

as in Prob. 4, page 69-

Polynomials ordinarily called ‘‘Hermite’s polynomials,” although they were dis-

covered by Laplace, are defined by

The first four of them are

Hi(y) = -
2/; 7/2 (2/) = 2

/® - 1; = -y^ + dy; Hi{y) = y* - 6y‘ + 3.

They possess the remarkable property of orthogonality:

r. e ^ Hm,{y)IIn{y)dy — 0 when m 9^ %

f ^HniyYdy = 's/^irnl

while
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Under very general conditions, a function f(y) defined in the interval ( — “ , + "

)

can be represented by a series

fiy) = ao 4- aiHiiy) -f a^E^iy) +

where in general

Let

1
dk = = c

2

2irJ_ «,

and =

f(y)H,(y)dy.

n a(l “ a)

provided 0 < a < 1.

9. Prove the validity of the following expansion indicated by Ch. Jordan:

(n + Dl

m!(n — m) f

.^m(i _ h

VS’t

1 - 20!

1 ~hHAy) +
ri + 2

2n - (lln + 6)q:(1 - ol)

h^.iy) +
271(71 -}- 2) (?2p -f- 3)

for 0 ^ 2: ^ 1 where 2/ is a new variable connected to x by the equation

x = a + T-
h

Hint: Consider the development in a series of Hermite’s polynomials of the

function

m = — a — for — /la S h,{l ~ a)

f{y) =0 if either y < —ha or y > h{l — a).

10. Assuming that the conditions of validity of formula (6) are fulfilled, show that

the a posteriori probability of the inequalities

m
I

n

a(l — a)
<P <

m fi

i"
'

n \

a(l — a) m
a — —

n

can be expanded into a convergent series

p = f\/^Jo

't

e ^ dy —
te ^2n- (lln + 6)a(l - a)

{71 +2){n 4- 3)a(l — a)
4- • •

When n is large and a is not near either to 0 nor to 1, two terms of this series suffice

to give a good approximation to P (Ch. Jordan). Apply this to Prob. 7.

Atis. 0.84585.
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CHAPTER V

USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS
OF PROBABILITY

1. The combined use of the theorems of total and compound proba-

bility very often leads to an equation in finite differences which, together

with the initial conditions supplied by a problem itself, serves to deter-

mine an unknown probability. This method of attack is very powerful,

and it is often resorted to, especially in the more difficult cases. In this

chapter the use of equations in finite differences, applied to a few selected

and comparatively easy examples, will be shown; but in Chap. VIII

we shall apply the method to a class of interesting and historically

important problems.

Certain preliminary explanations are necessary at this point. Again

we consider a series of trials resulting in an event E or its opposite, F,

but this time we suppose that the trials are dependent, so that the

probability of jE7 at a certain trial may vary according to the available

information concerning the results of some of the other trials.

A simple and interesting case of dependent trials arises if we suppose

that the probability of E in the (n + l)st trial receives a definite value

a if E has happened in the preceding nth trial, and this value does not

change whatever further information we may possess concerning the

results of trials preceding the nth. Also, the probability of E in the

(n + l)st trial receives another determined value ^ if E failed in

the nth trial, no matter what happened in the trials preceding the nth.

We have a simple illustration of this kind of dependence, if we suppose

that drawings are made from an urn containing black and white balls in

a known proportion, and that each ball drawn is returned to the urn, but

only after the next drawing has been made. It is obvious that the proba-

bility that the (n + l)st ball drawn will be white, becomes perfectly

definite if we know what was the color of the ball immediately preceding,

and it remains the same no matter what we know about the colors of the

1, 2, . . . {n — l)st balls.

If the trials depend on each other in the above-defined manner, we
say that they constitute a ^^simple chain, to use the terminology of the

late A. A. Markoff, who was the first to make a profound study of

dependent trials of this and similar, but more complicated, types. It is

implied in the definition of a simple chain that it breaks into two sepa-

rate parts as soon as the result of a certain trial becomes known. For
74
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instance, if the result of the fifth trial is known, trials 6, 7, 8, . . . become

independent of trials 1, 2, 3, 4, and the chain breaks into two distinct

parts: the trials preceding the fifth, and those following it. If the

results of trials 1, 2, 3, . , . (n — 1) remain unknown, the event E
in the following nth trial has a certain probability which we shall denote

by pn. Also, if it becomes known that E happened at trial k, where

A < n — 1, the probability of E happening in the nth trial receives a

different value, . It is important to find means to determine the

probability pn, the a priori probability of E in the nth trial when the

results of the preceding trials remain unknown; as well as to determine

the probability p^^^ of E in the nth trial when we possess the positive

information that E has materialized in the kth(k < n — 1) trial.

2. Thus we are led to the following problem concerning simple chains

of dependent trials:

Problem 1. The initial probability pi of the event E in a simple

chain of trials being known, find the probability pn of E in the nth trial

when the results of the preceding trials remain completely unknown.

Also, find the probability p^^^ of E in the nth trial when it is known that

E has happened in the kth trial where fc < n — 1.

Solution. In the nth trial the event E can happen either preceded

by E in the (n — l)st trial, the probability of which is pn-i, or preceded

by F in the (n — l)st trial, the probability of which is 1 —
* p^-i. By

the theorem of compound probability, the probability of the succession

EE is pn-ioi, while the probability of the succession FE is (1 — pn-i)i^.

Hence, the total probability pn is

(1) Pn = apn~l + /3(1 - Pn-l) = {a - 0)pn-l + d.

This is an ordinary equation in finite differences. It has a particular

solution

Pn = c = const.

where c is determined by the equation

c = (a —

whence

^
1 + P — a

provided 1 + ^ — a 9^ OA On the other hand, the corresponding

^ If 1 4- |S — Q! — 0 or a — jS = 1, we necessarily have a = 1, = 0, whicb.

means that E must oocuv in all the trials if it actually occurs in the first trial, and
never occurs if it does not actually occur at the outset. This case, as well as the other
extreme case in which a — ^ == — 1 can therefore be excluded as not possessing real

interest.
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homogeneous equation

yn = {a -

has a general solution

y„ = C(a —

involving an arbitrary constant C. Adding to it the previously found

particular solution, we obtain the general solution of (1) in the form

Pn = Cia — 1 +
1 + ^- a

The arbitrary constant C is determined by the initial condition

so that finally

C +
1 + /3 - a

= Pi

If

= r+|
-

- ^

we see that pn does not depend on n and is constantly equal to pu Be-

cause we may exclude the cases « — /? = ! or a — (3
— —1, so that

a — is contained between —1 and 1, we may conclude from the above

expression that pn, if not a constant, at any rate tends to the limit

1 + /? - a

as n increases indefinitely.

As to we find in a similar way that it satisfies the equation

(2) - ap^l, + ^(1 - pi^l,)

of the same form as equation (1). But the initial condition in this

case is = a because the probability of E happening in the {h + l)st

trial is a when it is known that E occurred in the preceding trial. The
solution of (2) satisfying this initial condition is

H-/3
+ 1 -

1 +|3 - a
(a — iS)”-

As the second term in the right-hand member decreases with increas-

ing ri and finally becomes less than any given number, we see that the

positive information concerning the result of the kth trial has less and less



Sec. 3] USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS 77

influence on the probability of E in the following trials, and in remote

trials this influence becomes quite insignificant.

Example. An urn contains a white and b black balls, and a series of drawings of

one ball at a time is made, the ball removed being returned to the urn immediately

after the taking of the next following ball. What is the probability that the nth ball

drawn is white when: (a) nothing is known about the preceding drawings; (6) the ^th

ball drawn is white?

a — 1 a ct

In this particular problem we have a ~ ——
jS = —— -» pi — ——7

a +6 — 1 a + 6 — 1 a + 0

and

Thus

1 4- ^ «

a

a 4“ 6
= pi.

Vn Vl
a

d b

That is, the probability for any ball drawn to be white is the same as that for the

first ball, nothing being known about the results of the previous drawings. The

expression for is, in this example,

a b (a + 6) (a 4- 6 - 1)"^"

So, for instance, if a = 1, 6 = 2, n = 5
,

A; = 3 ,

3 ^ 3 • 22 2'

the information that the third ball was white raises to the probability that the fifth

ball will be white; it would be without such information.

3. The next problem chosen to illustrate the use of difference equa-

tions is interesting in several respects. It was first propounded and
solved by de Moivre.

Problem 2. In a series of independent trials, an event E has the

constant probability p. If, in this series, E occurs at least r times in

succession, we say that there is a run of r successes. What is the proba-

bility of having a run of r successes in n trials, where naturally n > r?

Solution. Let us denote by yn the unknown probability of a run of

r in n trials. In n + 1 trials the probability of a run of r will then be

Pn+i. Now, a run of r in n 4- 1 trials can happen in two mutually
exclusive ways: first, if there is a run of r in the first n trials, and second,

if such a run can be obtained only in n 4- 1 trials. The probability of

the first hypothesis is 2/n. To find the probability of the second hypothe-
sis, we observe that it requires the simultaneous realization of the follow-

ing conditions

:

(a) There is no run of r in the first n — r trials, the probability of

which is 1 “ (&) In the (n — r + l)st trial, E does not occur,
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the probability of which is g — 1 — p. (c) Finally, E occurs in the

remaining r trials, the probability of which is p’’.

As (a), (6), (c) are independent events, their simultaneous mate-

rialization has the probability

(1 - yn^)qp^>

At the same time, this is the probability of the second hypothesis.

Adding it to yn, we must obtain the total probability yn-^i- Thus

(3) yn+l = + (1 ” yn~r)p''q

and this is an ordinary linear difference equation of the order r + 1-

Together with the obvious initial conditions

2/0 = yi = • • • = yr-l = 0
, yr = P"

it serves to determine y^ completely for n = r + 1, r + 2, . . . . For

instance, taking n = Vj we derive from (3)

2/r+i = P" + P%
Again, taking n = r + 1, we obtain

yr+2 = p** + 2p^q

and so forth. Although, proceeding thus, step by step, we can find the

required probability for any given n, this method becomes very labori-

ous for large % and does not supply us with information as to the behavior

of pn for large n. It is preferable, therefore, to apply known methods of

solution to equation (3). First we can obtain a homogeneous equation

by introducing Zn = I — yn instead of yn^ The resulting equation in

2:^ is

(4) Zn-j-l qp^^n~r
~ 0

and the corresponding initial conditions are:

Zq := Zi == • • • == Zr-l =1; Zr = 1 — p-

We could use the method of particular solutions as in the preceding

problem, but it is more convenient to use the method of generating

functions. The power series in ^

= Zo + Zi^ + Z2P + . . .

is the so-called generating function of the sequence Zo, zi, Z2 , . . . .

If we succeed in finding its sum as a definite function of the development
of this function into power series will have precisely Zn as the coefficient

of To obtain let us multiply both members of the preceding

series by the polynomial

1 ~ I + S'pT’^h
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The multiplication performed, we have

(1 - S + = ^0 + (^1 - + ‘ •
* + {Zr-l - +

+ (Zr
- + fe+1 - ;2r + + * • • .

In the right-hand member the terms involving . . . have

vanishing coefficients by virtue of equation (4) ;
also Zk — Zk-^i = 0 for

/c = 1, 2, 3, . . . r — 1, while

2:0 = 1 and Zr — Zr-i = — p"*

so that

(1 - ^ + gp"r+')^(?) = 1 - p^r

and

1 ” f + gp’-r'"'’

The generating function (p{^) thus is a rational function and can be

developed into a power series of f according to the known rules. The
coefficient of gives the general expression for Zn^ Without any dif-

ficulty, we find the following expression for Zn-

(5) Zn = ^n,T P^^n—r,r

where
n

^n.r = JC-D'CUCgr)'
2 = 0

and I3n-^r,r is obtained by substituting n — r instead of n. If n is not very

large compared with r, formula (5) can be used to compute Zn and

Vn ~ 1 Zw

For instance, if n = 20, r = 5, and p = g = 3=^, we easily find

_ W „ 10
,

^20 -I + 0^2 64 647

and hence

;S2o = 0.75013

correct to five decimals; t/20 = 0.24987 is the probability of a run of 5

heads in 20 tossings of a coin.

4. But if n is large in comparison with r, formula (5) would require

so much labor that it is preferable to seek for an approximate expression

for Zn which will be useful for large values of n. It often happens, and
in many branches of mathematics, but especially so in the theory of

probability, that exact solutions of problems in certain cases are not of

any use. That raises the question of how to supplant them by con-
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venient approximate formulas that readily yield the required numbers.

Therefore, it is an important problem to find approximate formulas where

exact ones cease to work. Owing to the general importance of approxi-

mations, it will not be out of order to enter into a somewhat long and

complicated investigation to obtain a workable approximate solution

of our problem in the interesting case of a large n.

Since <^(^) is a rational function, the natural way to get an appropriate

expression of Zn would be to resolve (p{i) into simple fractions, correspond-

ing to various roots of the denominator, and expand those fractions in

power series of However, to attain definite conclusions following this

method, we must first seek information concerning roots of the equation

1 - I + = 0.

5. Let m = I - 1 -

where
^ a = p’’(l -- p).

When p varies from 0 to 1, the maximum of p^(l — p) is attained for

p = —— and is r'^/{r + so that a g rV(^ + in all cases.
T -p i

To deal with the most interesting ease, we shall assume

(6)

which involves

p <
r

r + 1

and we leave it to the reader to discover how the following discussion

T
should be modified if p ^ —r—

When ^ starts to increase from 0, the function /(^ steadily increases

and attains a positive maximum for f where

(r + = 1

after which /(^) decreases steadily to negative infinity. Hence, there

are two positive roots of the equation /(^) = 0: fi, which is less than

and another root greater than this number. This root is 1/p if

condition (6) is fulfilled.

The remaining roots are all imaginary if r is odd and there is one
negative root among them if r is even.

Now we shall prove that the absolute value of every imaginary or

negative root is >llp. Let p be the absolute value of any such root.
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We have first

/(p) = p — 1 — < 0

so that p belongs either to the interval (0, ^i) or to the interval {1/p, +
and if we can show that p > fo then p can be only >l/p. If the root we
consider is negative, p satisfies the equation

F{p) = 1 + p
“ = 0

and since F{p) increases till a positive naaximum for p = is reached, and

then decreases, the root of F{p) = 0 is necessarily >^o. If f = pe^^ is

an imaginary root of /(J) = 0 we have, equating imaginary parts.

(7) ap'^
sin (r + 1)^

sin B
= 1 .

But, whatever 6 may be

Isin (r + 1)^1

sin 6
^ r + 1

the equality sign being excluded if sin B ^ Hence,

(r + 1 )q:p" > 1

which implies p > fo. The statement is thus completely proved.

6 . The equation

^ - 1 - af+i = 0

can be exhibited in the form

I
+ = 1.

Substituting ^ — pe"^ here, and again equating imaginary parts, we get

ap'^^^ sin tB = sin 6

and, combining this with (7),

= sin (r + 1)^
^ _ (sin rOy sin B

^ sin rd
^

^
[sin (r +

^The extreme values of the ratio

roots of the equation m sin d cos mB =

sin mB—--(m mteger > 1) correspond to certain
sm 0

sin mB cos 0, but for every root of this equation

sin mB
sin B

m

Vl + - 1) sin® S

^ m

The equality sign is excluded if sin B differs from 0.
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If the imagiaary part of ^ is positive, the argument 0 is contained

between 0 and tt. In this case, it cannot be less than or greater

than T
r + 1

For, if 0 < <

At the same time

r + 1

sin rd sin (r + 1)^

rd (r + 1)0

sin (r + 1)0 r + 1

and hence

sin (r + 1)0 r + 1

sin rd sin 0

sin (r + l)0j sin (r +1)0 (r + l)^+i^

which is impossible. That 0 cannot be greater than tt
—

simply, because in this case, sin (r + 1)0 and sin r0 would be of opposite

signs and p would be negative.

As j

—T < 0 ^ TT
r + 1

““
r + 1'

we have

p sin 0 > p sin
r + 1

On the other hand, sin a: > 2x/t if 0 < x < t/2 and p > 1/p. Hence,

2
p sin 0 > 7—r~rY"*

(r + l)p

Thus, imaginary parts of all complex roots have the same lower bound

2

(r + l)p

of their absolute values.

7. Denoting the roots of the equation /(^) = 0 by

= 1,2, . . . r + 1)

r-fJL

= (i _ iVl

we have
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Hence, expanding each term into power series of ^ and collecting

coefficients of we find

r+ l

k=l
(1 - r + 1 - rffc

For every imaginary root, we have

(1 - PMir
(1 — P)^h(r + 1 — r^k) Kl - pf

Since

< p) < ^p;
Ir + 1 - T^k\

<
(r + l)p

2r

If T is oddj there are r — 1 imaginary roots and the part in the expression

of Zn due to them in absolute value is less than

(r + l)(r - 1)pn+2 ^ -P
r{l — p)

^ ^ 1 — p^

The term corresponding to the root 1/p vanishes, so that finally

= ^ ~
.

-jp
in4-2

(1 — p)|i r + 1 — r^i
' “1 - p'

where |0| < 1 and denotes the least positive root of the equation

1 — f = 0.

If r is even, there is one negative root. The part of z„ corresponding

to this root is less than

2pn+2

(1 - p)r

The whole contribution due to imaginary and negative roots is less than

^n+2 ^ rtn+2

r(l — py ^ 1 — p^

in absolute value. Thus, no matter whether r is odd or even, we have

(8)
, = 1 ~
" (1 - P)b

Ir"

r + 1 -
-1 < 0 < 1 .

This is the required expression for 2„, excellently adapted to the case of a

.large value for n, since then the remainder term involving d is completely

negligible in comparison with the first principal term.
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The root can be found either by direct solution of the trinomial

equation following Gauss’ method, or by application of Lagrange’s series.

Applying Lagrange’s series, we have

, , , ,

^ar + 2)ar + 3)
^ •

• {Ir + l)

= 1 + a +
Ẑ = 2

los I. - . + + +

Z=2

both series being convergent if \a\ < r^/(r + 1)’*+^ and this condition is

satisfied.

8. Let us apply the approximate formula (8) to the case p = q
—

and r = 10. Using Lagrange’s series, we find that

a = 1.0004909

and
Kfi

Zn - 1.003947 • (1.0004909)-” +

Hence, for n = 100, 1,000, 10,000, respectively,

= 0.9559; 0.6146; 0.0074

so that, for instance, the probabilities of a run of at least 10 heads in

100, 1,000, or 10,000 throws of a coin are, respectively,

0.0441; 0.3854; 0.9926.

Thus, in 10,000 throws, it is quite likely that heads would turn up 10 or

more times in succession.

In general, for a given r and increasing n, the probability Pn tends to 1,

so that in a very long series of trials, runs of any length are extremely

likely to occur, a conclusion which at first sight seems paradoxical.

9. In the preceding examples, an unknown probability was deter-

mined by an ordinary equation in finite differences. Very often, how-
ever, probability as a function of two or more independent variables is

defined by a partial difference equation in two or more independent

variables, together with a set of initial conditions suggested by the

problem itself. A few examples will suffice to illustrate the use of

partial equations in finite differences and to give an idea of the two
principal methods for their solution; namely, Laplace’s method of

generating functions, and the less well known, but elegant, method
proposed by Lagrange.

We start with an analytical solution of the problem which was dis-*

cussed in detail in Chap. in.
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Problem 3. Find the probability of exactly x successes in t inde-

pendent trials with the constant probability p.

Solution by Laplace’s Method. Let us denote the required proba-

bility by To obtain x successes in t trials can be possible only in

two mutually exclusive ways: (a) by obtaining x successes in ^ — 1 trials

and a failure at the last trial; (6) by obtaining success at the last trial

and X — 1 successes in the preceding ^ — 1 trials. The probability of

case (a) is qyx,t-i and that of case (6) is The total probability

yx,t satisfies the equation

(9) yx,t = pyx-i,t~i + qyx,t-i

for~ all positive x and t. This equation alone does not determine yx,t

completely, but it does so in connection with certain initial conditions.

These conditions are

yx,o = 0 if X > 0,

(10)

yo,t = if t ^ 0.

The first set of equations is obvious; the second set is the expression

of the fact that if there are no successes in t trials, the failures occur t

times in succession, and the probability for that is qK

Following Laplace, we introduce for a given t the generating function

of yo,tj yi,t) y2 ,t, . . . ,
that is, the power series

oo

<PtW = yo.t + 2/ 1 , + 2/2. 4?® + • • • =
a: = 0

Taking t — 1 instead of t, separating the first term and multiplying by

g, we have
00

Q'(Pi_i(?) = g2/o.4-i + 2^g2/*.t-i?’^;

X=1

and similarly

eo

= 2)P2/x-l,«-lS®.

x — 1

Adding and noting equation (9) we obtain

(pf + Q)<Pt-i{^) = + qyo.t-^i ~ yo,t,

but because of (10)

gt/o.«-i “• yo.t = = 0

and hence,

<Pt{0 = (p? +
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for every positive t. Taking i = 1, 2, 3, . . . and performing successive

substitutions, we get

+ Q')Vo(f)

and it remains only to find

<^o(f) = ^0,0 + ^1,0? + 2/2,0^^

But on account of (10), 2/a;.o = 0 for ir > 0, while ^o.o = 1. Thus,

<^o(?) = 1

and

To find yx,t it remains to develop the right-hand member in a power series

of ^ and to find the coefficient of The binomial theorem readily gives

Vx.t
m - 1 )

1 • 2

10. Poisson’s Series of Trials. The analytical method thus enables

us to find the same expression for probabilities in a Bernoullian series

of trials as that obtained in Chap. Ill by elementary means. Considering

how simple it is to arrive at this expression, it may appear that a new
deduction of a known result is not a great gain. But one must bear in

mind that a little modification of the problem may bring new difficulties

which may be more easily overcome by the new method than by a general-

ization of the old one. Poisson substituted for the Bernoullian series

another series of independent trials with probability varying from
trial to trial, so that in trials 1, 2, 3, 4, . . . the same event E has different

probabilities pi, p 2 , Vz, p4
,

. . . and correspondingly, the opposite event

has probabilities gi, g2 , Qz, g4 ,
. . • where gjfc = 1 — in general. Now,

for the Poisson series, the same question may be asked: what is the

probability yx,i of obtaining x successes in t trials? The solution of this

generalized problem is easier and more elegant if we m^ke use of differ-

ence equations.

First, in the same manner as before, we can establish the equation in

finite differences

(11) y^,t = 4- qtyx,t-i.

The corresponding set of initial conditions is

Vx,a = 0 if a: > 0

(12) = gig2
• •

• qt if t > 0

2/0.0 = 1 .

Giving ^((1) the same meaning as above, we have
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a: = l

00

Pt^<pt-iQ) = '^ptyx-i.t~i^=‘,

whence

{pt^ + qt)(pt-i{0 = (pt(0 + qiVoa-i “ yo,t;

but because of (12)

qtyo,t-~i — yQ,t == qiq2
* '

' Qt — qm *
* * = 0

,

and thus

<pX^) ~ {Pi^ + qt)<Pi-l{^)

whence again

= (Pi^ + 3'i)(P2? + ^2)
* *

* (pt^ + qt)<poU)-

However, by virtue of (12), <^o(?) = 1 so that finally

(ptiO = (pif + qi)(p2^ + g2)
• •

* (pi^ + gc).

To find the probability of x successes in t trials in Poisson's case, one

needs only to develop the product

(pi? + gi)(p2? + g2)
* *

* {pti + qt)

according to ascending powers of ^ and to find the coeSicient of

11. Solution by Lagrange's Method. We shall now apply to equa-

tion (9) the ingenious method devised by Lagrange, with a slight modifica-

tion intended to bring into full light the fundamental idea underlying this

method. Equation (9) possesses particular solutions of the form

a^l3^

if a and 13 are connected by the equation

a/3 = p + ga.

Solving this equation for (3, we find infinitely many particular solutions

* a'^{q + pa~^y

where a is absolutely arbitrary. Multiplying this expression by an
arbitrary function (p{a) and integrating between arbitrary limits, we
obtain other solutions of equation (9). Now the question arises of how
to choose <p{a) and the path of integration to satisfy not only equation (9)

but also initial conditions (10). We shall assume that ^(a) is a regular

function of a complex variable a in a ring between two concentric circles,

with their center at the origin, and that it can therefore be represented in

this ring by Laurent's series
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If c is a circle concentric with the regularity ring of (p(a) and situated

inside it, the integral

1
yx,t =

^.J
a"" ^(q + pa ^yip{a)da

is perfectly determined and represents a solution of (9). To satisfy

the initial conditions, we have first the set of equations

JL

27r^
^<p(cx)doi == 0 for a; = 1, 2, 3, . . .

which show that all the coefficients Cn with negative subscripts vanish,

and that (p{a) is regular about the origin. The second set of equations

obtained by setting x == 0

±.(
27riJc

(q + pa-^y^^^da =
a

for i = 0, 1, 2, . . .

serves to determine <^(a). If e is a sufficiently small complex parameter,

this set of equations is entirely equivalent to a single equation:

1
I

(p{oi)da

2TriJc a — €(p + qa) 1 — eg

Now the integrand within the circle c has a single pole ao determined by
the equation

aa = e{p -y qoco)

and the corresponding residue is

<pM
1 — qe

At the same time, this is the value of the left-hand member of the above
equation, so that

<p(ao) _ 1

1 - ge q^

or

(p(ao) = 1

for all sufficiently small e or ao. That is, (p(a) = 1 and

yx,t q-\- -] da

is the required solution. It remains to find the residue of the integrand;

that is, the coefficient of 1/a in the development of
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in series of ascending powers of a. That can be easily done, using the

binomial development, and we obtain

yx,t = Cfp^q^'-^

as it should be.

12. Problem 4. Two players, A and B, agree to play a series of

games on the condition that A wins the series if he succeeds in winning a

games before B wins 6 games. The probability of winning a single game
is p for A and g = 1 — p for S, so that each game must be won by either

A or B. What is the probability that A will win the series?

Solution. This historically important problem was proposed as an

exercise (Prob. 12, page 58) with a brief indication of its solution based

on elementary principles. To solve it analytically, let us denote by

yx,t the probability that A will win when x games remain for him to win,

while his adversary B has t games left to win. Considering the result

of the game immediately following, we distinguish two alternatives:

{a) A wins the next game (probability p) and has to win x ^ 1 games

before B wins t games (probability Q>) A loses the next game
(probability q) and has to win x games before 5 can win t — 1 games

(probability The probabilities of these two alternatives being

pyx-i,t and qyx,t-^i their sum is the total probability yx,u Thus, yx,t

satisfies the equation

(13) yx,t = PVx-i^ + qyx,t-.v

Now, yxfi = 0 for x > 0^ which means that A cannot win, B having

won all his games. Also, yo,t = 1 for ^ > 0, which means that A surely

wins when he has no more games to win. The initial conditions in our

problem are, therefore,

yx,o = 0 if X > 0;

(14)

yo,t = 1 if t > 0.

The symbol yo,o has no meaning as a probability, and remains undefined.

For the sake of simplicity we shall assume, however, that yo,o = 0.

Application of Laplace’s Method. Again, let

== yx,Q + + yx, 2^^
.

be the generating function of the sequence yx,o’j yx,if 2/^. 2? . . . cor-

responding to an arbitrary a; > 0. We have

00

t = l

oe
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and
00

qivAi) + = vvx-ifi +
i = l

or, because of (13),

“ pyx-^1,0 ” yz,o + <pxi^)-

Now, for every x > 0

yx,o ^ yx~i,o ~ 0

in conformity with the first set of initial conditions, which allows us to

present the preceding relation as follows:

whence

But

<Po(^) = 2/0.0 + 2/0 .
1$ + 2/0 . 2$^ + . . . = ^ + + ^3 + . . . =

and finally

^pX

(1 - |)(1 - g^y

It remains to develop the right-hand member in a power series of $ and
find the coefficient of As

= ^ + e + e +

and

-1+# + 1.2

we readily get, multiplying these series according to the ordinary rules.

_i_ + 1)

y
x{x-{- 1) +

x{x + 1) {x + t-2)
^^_,

1-2 ^ ' '

1 • 2 •••(«- 1)

which coincides with the elementary solution indicated on page 58.

Application of Lagrange’s Method. Equation (13) has particular

solutions of the form

where

a/3 = p/5 + yoc.
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Hence, we can either express a by jS or by a. Leaving it to the reader

to follow the second alternative, we shall express a as a function of jS

and seek the required solution in the form

^
fcX(l

where (^(/3) is again supposed to be developable in Laurent^s series in a

certain ring; c is a circle described about the origin and entirely within

that ring. Setting x = 0, we must have

= 1 for i = 1, 2, 3, . . .

and this set of equations is satisfied if we take

m = j-2 + ^3 + • = ^(/_ 1);

Now we have

___ C
~ J,(l - - 1)

and for ^ = 0

_ P* r _ A
2Ttj,(i - - 1)

as it should be, because for
|/5| > 1 the integrand can be developed into a

power series of l/ft the term with 1//? being absent. Thus, the required

solution is given by

_ r
y^'*

~
(1
- - 1)

where c is a circle of radius >1 described about the origin. The final

expression for yx,t is obtained as the coefficient of 1//3 in the development

of
pxpt-i

(1 - - 1) .

into power series of 1/^. We obtain the same expression as before.

Problems for Solution

1. Each of n urns contains a white and h black balls. One ball is transferred from
the first urn into the second, another one from the second into the third, and so on.

Finally, a ball is drawn from the nth urn. What is the probability that it is white,

when it is known that the first ball transferred was white?

d + b +
Ct 'T' O G 0
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2. Two urns contain, respectively, a white and h black, and h white and a black

balls. A series of drawings is made, according to the following rules

:

a. Each time only one ball is drawn and immediately returned to the same urn it

came from.

h. If the ball drawn is white, the next drawing is made from the first urn.

c. If it is black, the next drawing is made from the second urn.

d. The first ball drawn comes from the first urn.

What is the probability that the nth ball drawn will be white?

Ans. = - +
2i

3. Find the probability of a run of 5 in a series of 15 trials with constant prob-

ability p = K. 2/15 = 23.3-6 - 70.3-12 =: 0.0314184.

4. How many throws of a coin suffice to give a probability of more than 0.999 for

a run of at least 100 heads? Ans. 1.76 • lO^i throws suffice.

5. What is the least number of trials assuring a probability of ^ for a run of at

least 10 successes if p = g = K? Ans. 1,420.

6. Seven urns contain black and white balls in the following proportions:

Urns 1 2 3 4 5 6 7

White 1 2 2 : 3 2 3 4

Black 2 1 2 1 5 2 5

One ball is drawn from each urn. What is the probability that there will be among
them exactly 3 white balls? Ans. Coefficient of in.

(U + l)(l^ + i)(H -1- i)(ll + i)m + f)(ie + -Dm + f)

or

If = 0.28025.

7.

Two players, each possessing $2, agree to play a series of games. The prob-

ability of winning a single game is for both, and the loser pays |1 to his adversary

after each game. Find the probability for each one of them to be ruined at or before

the nth game?
Solution. Let ym be the probability that after playing 2m games, neither of the

players is ruined. We have

ym+l ~ y^y?n

and hence

Vm
1

2 ”‘

The probability for one of the players to be ruined at or before the nth game is -

2^+1

if n = 2m or n == 2m -f 1.

8 . Solve the same problem if each player enters the game with $3.

Ans. if n = 2m — 1 or n = 2m.
9. Players Ai, A2, . . • A^+i play a series of games in the following order: first Ai

plays with A 2; the loser is out and the winner plays with the following player, A3; the
loser is out again and the next game is played with A 4, and sopn; the loser always being
out and his place taken by the next following player. The probability of winning a
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single game is for each player and the series is won by the player who succeeds in

winning over all his adversaries in succession. What is the probability that the

series will stop exactly at the a;th game? What is the probability that the series will

stop before or at the a;th game?
Solution. Let y-x be the probability that the series terminates exactly at the xth

game. That means that the player who won the game entered at the {x — n -{ l)st

game and won successively the n following games. Now, there are n — 1 cases

to be distinguished according as the player beaten at the {x — n + l)st game has

already won 1, 2, 3, . . . n — 1 games. Let p* be the probability that the loser in the

{x — n + l)st game previously has won k games. The probability of ending the

series in this case is ^*72^. On the other hand,

so that

'Pk yx—k

^ " 2*
‘

Hence, ioT x > n

1 1 1

Vx = + 4
^®“^ 4- ...

-I-

Initial conditions:

yi = 2/2
= • • • = yn-i = 0; yn =

The generating function of yx'.

2/1 + 2/2 ^ + 2/ 3|^ + •

and the generating function of the probability that the series will end before or at the

a:th game is

4-i)
2»-Hi - J)(^1 - i + fl)

10 . Three players. A, B, C, play a series of games, each game being won by one of

them. If the probabilities for Aj B, C to win a single game are p, q, r, find the prob-

ability of A winning a games before B and C win h and c games, respectively.

Solution. Let Ax,y,z denote the probability for A to win the series when he has

still to win X games, while B and C have to win y and z games, respectively. First,

we can establish the equation

Ax,v,z — pAx—l.y,z "h Q.Ax,y—l,z “j” f'Ax,y,z—l-

Next, Ao^y^z = 1 for positive y, 0
,
and Ax,o,z

~ 0 for positive x, z; Ax,y,Q = 0 for posi-

tive X, y. Besides, although this is only a formal simplification, we shall assume
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Ax,<i,z = 0, Ax,y,<i = 0 when x ot y or z vanishes. For the generating function of

4>zUy ’?) = 2)

we find the equation

whence

The final answer is

v) =

<f>x(k, v) =

y,z—0

V

I — — Tiq
V)

iv

Aa,b,c = p^j 1 + -(5 + ^) + -j_ ^)2
a(a + l)(g +2)

1-2-3 (q + rP +

the dash indicating that powers of q and r with the exponents ^ b and ^ c are omitted.

Obviously, the same method can be extended to any number of players, and leads

to a perfectly analogous expression of probability.

11. An urn contains n balls altogether, and among them a white balls. In a series

of drawings, each time one ball is drawn, whatever its color may be, it is replaced by
a white ball. Find the probability 2/®.r that after r drawings there are x white balls

in the urn.

Solution. The required probability satisfies the equation

n — X 1 X
Vx.T+i — yx-i,r H—yz,f

n n
Besides,

2/a.o == 1, 2/x,o =0 if X 7^ ay yz,r =0 if x < a.

From the preceding equation, combined with the initial conditions, we find suc-

cessively

Pa+lfT —

(n — a)in
-

><<-- ->
[(^

2
)- _ ^ (jy

and so on.

r
12. If, in the problem of runs, p is supposed to be > -— prove that the probabil-

ity of a run of r in n trials is greater than

I
p -p^

,

>•(? + pi)\

\r - (r + l)pi 2 /I — Pi

r
where pi < -—— is a root of the equation

r -h 1

pI(i - pi) = p'Ci- - p)-
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13 . To find an asymptotic expression of probability for a run of r in n independent

trials, if p ^
r -f 1

tive roots of the equation

the following proposition is of importance: Imaginary and iiegaN

(1 0<s^ —-

—

n — I

are, in absolute value, greater than the root R > 1 oi the equation

2x
(1 — s)R^ — R + s cos — = 0.

n

Prove the truth of this statement.

14. Given s urns containing the same number n of black and white balls in known
proportions, drawings are made in the following manner: first, a single ball is drawn
out of every urn; second, the ball drawn from the first urn is placed into the second;

that drawn from the second is placed in the third, and so on; finally, the ball drawn
from the last urn is placed in the first, so that again every urn contains n balls. Sup-

posing that this operation is repeated t times, find the probability of drawing a white

ball from the a:th urn.

Solution. Let yx,t be the required probability. First, it can be shown that it

satisfies the equation

Vz.t “
(
1

-i

\ n,} n

The initial probabilities 2/1,0, 2/2,0, . • • 2/s.o are known; and, moreover, the function

yx,t must satisfy a boundary condition of the periodic type, 2/0 , t == 2/s,^ Hence,

applying Lagrange’s method, the following solution is found

0 ^ - 2) + . .

.

]

where

fix) = 2/®,o when a: > 0

and the definition is extended to a; ^ 0 by setting

f(~x) = f(s - x).

If, to begin with, all urns contain the same number of white and black balls, so that

f(x) = const. = p, we shall have, no matter what t is,
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CHAPTER VI

BERNOULLI’S THEOREM

!• This chapter will be devoted to one of the most important and

beautiful theorems in the theory of probability, discovered by Jacob

Bernoulli and published with a proof remarkably rigorous (save for some

irrelevant limitations assumed in the proof) in his admirable posthumous

book ^^Ars conjectandi^^ (1713). This book is the first attempt at scien-

tific exposition of the theory of
.

probability as a separate branch of

mathematical science.

If, in n trials, an event E occurs m times, the number m is called the

^Trequency^^ of jE? in n trials, and the ratio m/n receives the name of

^^relative frequency.’^ Bernoulli’s theorem reveals an important proba-

bility relation between the relative frequency of E and its probability p.

Bernoulli’s Theorem. With the 'probability approaching 1 or certainty

as near as we please, we may expect that the relative frequency of an event E
in a series of independent trials with constant probability p will differ from
that probability by less than any given number e > 0, provided the number

of trials is taken sufficiently large.

In other words, given two positive numbers e and rj, the probability

P of the inequality

will be greater than 1 — 77 if the number of trials is above a certain

limit depending upon € and rj.

Proof. Several proofs of this important theorem are known which

are shorter and simpler but less natural than Bernoulli's original proof.

It is his remarkable proof that we shall reproduce here in modernized

form.

a. Denoting by Tm, as usual, the probability of m successes in n trials,

we shall show first that

if 6 > o and k > 0. Since the ratio

_ n — x p
r* a; + 1 ^

96
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decreases as x increases we have for & > a

Th+i ^ Ta+i Th+1 ^ Th
m ^rn ^r ^ •

J- b J- a J- ct-f 1 J- a

Changing 6, a, respectively, into 6 + 1, a + l;6 + 2, a + 2;

a + fc, it follows from the last inequality that

that is,

Tb.+.k

Ta-^k

^ Tb+k~i ^ ^ Th+i ^ T\
^ m ^ ^ m m

Tb-{.k

Tb

Ta+k

Ta '

b + kj

b. Integers X and fx being determined by the inequalities

X— l<np^X, jLt-“l<np + n€^iLt

the probabilities A and C of the inequalities

0 < m
p <e;

m
n n

are represented, respectively, by the sums

— p ^ €

A == T\ 7x+i + • *
• + Tfi^x

C = Ty, A" Tyj^i 4- • •
• +

the first of which contains jit — X = ^ terms. Combining terms of the

second sum into groups of g terms (the last group may consist of less than

g terms) and setting for brevity

Al = Tfi + Tfi+l + • •
• + Ty^g-l

A 2 = Tfx+g + Ty+g+l + • *
• + Ty+2g-^l

As = Ty+2g + Tii+2g+l + * *
* + 7V+3ff-l

we shall have

C==AiA“A2HhA3'-f' * ’ ’

and at the same time

(2)

The ratio

A 1 . A 2 ^
A ^ Tx' Al ^ Tx'

‘ ‘

Al =-
T\^g+i -f-

* « «

-f- rx4.2g-~i

A Tx + Tx+i 4~ ' •
• + ITx+ff-i

is less than the greatest of numbers
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But by inequaiity (1)

Tx ^ Tx+I
> > ^X-|-2ff—

1

hence

Similarly,

A ^ Tx

A2 . Tfi+g

Xi ^TT'
and again by inequality (1)

Consequently

Tfi+g ^ T\+g

T, Tx'

A2 ^ Tg,

A. 3 ^^0

A 2 TfiJ^g

Tp,+2g ^ m J

fi-^g i (i

Az ^ ^
As Tx

and inequalities (2) are established.

c. For X ^ \

Tx+i < 1 .

It suffices to show that

Tx+i _ n — \ p ^ ^

Tx X+lg ^
As X ^ np

n-\ p ^ npq .

X + 1 g
~ npq + q

rp

which shows that -7^ <1.
lx

The inequality just established shows that in the following expression:

It ^JjL.,I±=±
Tx T/x-i T(i^2

T;/i-a+l

T,. Tfi^^i

Tx+i

Tx

all the factors are < 1 . Consequently, if we retain a S g first factors

only, replacing the others by 1, we get

Moreover,

Tx = T,^i n~-2 T,^ ‘

Tfi—i TfjL^2
< ^ Tp—g+l

^ 77
JL U—OC{
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whence the following important inequality results:

(3)
"La <: (^ M + q;

T\ \/x — (X + IqJ

Here a is an arbitrary positive integer ^ g.

Now, let e be an arbitrary positive number,

for

(4)

we have both

n ^
Qf(l + e) — q

eip + e)

Then we can show that

(i)
n --

fj> + a p ^ p
fjL
— a + 1 q ~p + €

and (ii) a S g.

Since g, np + ne, it suffices to show that (i) is satisfied for }i = np + ne.

If /X = np + ?^€ inequality (i) is equivalent to

nq — ne a ^ q

np ne — a 1 “p + €

or, after obvious simplifications,

ne{p + e) ^ a(l + e) — q.

But this inequality follows from (4). To establish (ii), since a and g

are integers, it suffices to show^ that a < ^ + 1. But m ^
\ < np + 1 and consequently g + 1 > ne. Hence (ii) will be estab-

lished if we can show that ne a which by virtue of (4) will be true if

+ ^) - g ^ ^
P + €

that is, if

o:(l + e) — q ^ ap + ae

or aq — q 0 which is obviously true, a being a positive integer.

d. The auxiliary integer a is still at our disposal. Given an arbitrary

positive number ?? < 1 we shall determine a as the least integer satisfying

the inequality

At the same time
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and since log

and

(-0 > } we shall have
V + ^‘

«< logl
€ TJ

€{p + e) 77 €

^ 1 + ,

1

then by virtue of (i) and (3)

Consequently, if

(5) ^ ^ log- +

"

77 €

Tx
< V,

and by virtue of (2)

Ai < Ar]j A2 < A177 < At]^, Az < A 2r) < A 7)^f

whence

-477

(6) C <C A77 “t" A 77
^

“f" At}^ -j-

1-77

This inequality holds if n satisfies (5). No trace of the auxiliary

integer a is left.

e. Let us now consider the inequalities

-€<--- p < 0 and - - - e
n n

and introduce their respective probabilities B and D. These inequalities

are equivalent to

^ . n — m . , n — m .

n n

It is apparent that we can interpret J5 or D as probabilities that the num-
ber of occurrences = n — moi the event F opposite to in n trials will

712/ 7Y)/
satisfy either the inequality — ?<€ or — — Since

the right-hand side of (5) contains only given numbers e, 77 it is clear that

(7) D <^
if (5) is satisfied.

Now A + B — P is the probability of the inequality
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and C + D = Q is the probability of the opposite inequality

m
r P!

Hence P + Q = 1 . Moreover, by (6) and (7)

Pv
Q <

Consequently,
V

or

if only

p+^>i
1 — rj

P > 1 — 7?

. 1 +€, 1,1n ^ ^ log ~°
7] e

This completes the proof of Bernoulli's theorem.

For example, if p = g = 3^-^ and € = 0 .01
,

rj = 0.001 we get from (5)

n ^ 69,869

which shows that in 69,869 trials or more there are at least 999 chances

against 1 that the relative frequency will differ from by less than 3d^oo*

The number 69,869 found as a lower limit of the number of trials is

much, too large. A much smaller number of trials would suffice to fulfill

all the requirements. From a practical standpoint, it is important to

find as low a limit as possible for the necessary number of trials (given e

and 7]). With this problem we shall deal in the next chapter.

2 . Bernoulli's theorem states that for arbitrarily given e and rj there

exists a number no(e, rj) such that for any single value n > ?^o(6 ,
77) the

probability of the inequality

m
pn
< e

will be greater than 1 — 77 . The question naturally arises, whether for

given 6 and rj a number iV’(€, 77) depending upon € and 77 can be found such

that the probability of simultaneous inequalities

m - V < e

for all n > N{€, 77) will still be greater than 1 — 77 . The following theo-

rem due to Cantelli shows that this question can be answered positively.

Cantelli’s Theorem. For given e < 1, 77 < 1 let N be an integer

satisfying the inequality

ff>§log|,+2
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The probability that the relative frequencies of an event E will differ from

p by less than e in the Nth and all the following trials is greater than 1 —
Proof. We shall prove first that the probability Qn of the inequality

m

will always be less than According to results proved in the

preceding section for any ?7 > 0

Qn < rj

if

1 , 1 1
n > —^ log - + ~.

This inequality, if we take yj == becomes

1+6 1 1-+6,
n > -j-n + - ^ log 2

and in this form it is evident, since for e < 1

1 - log 2 < 1 - 2 log 2 < 0.

Hence, as stated,

(8) Qn <

The event A, in which we are interested, consists in simultaneous

fulfillment of all the inequalities

m
P\

/VI
< 6

for n = Nj N + W + 2, . . . . The opposite event B consists in

the fulfillment of at least one of the inequalities

m
I pn

where n can coincide either with N, or with AT + 1, or with A + 2, . . .
*

The probability of B, which we shall denote by R, certainly does not

exceed the sum of the probabilities of all the inequalities

m
n V\

Tor n = A, A + ]\r + 2, . . . .

Consequently, referring to (8),

R <
j

n =N
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To satisfy the inequality

1 - < V

it suffices to take

Now

2 2
,
2

,
1_log- + -log^-^..

p 1 _ ^ 72 ^ + 2.

Consequently, if

N ^ log 4- + 2

we shall have R < v and at the same time the probability of A will be
greater than 1 — -j?, which proves Cantelli’s theorem.

Significance op Bernoulli's Theorem

3. As was indicated in the Introduction, one of the most important

problems in the theory of probability consists in the discovery of cases

where the probability is very near to 0 or, on the contrary, very near to 1,

because cases with very small or very “ great probability may have real

practical interest. In Bernoulli's theorem we have a case of this kind;

the theorem shows that with the probability approaching as near to 1

or certainty as we please, we may expect that in a sufficiently long

series of independent trials with constant probability, the relative fre-

quency of an event will differ from that probability by less than any
specified number, no matter how small. But it lies in the nature of the

idea of mathematical probability, that when it is near 1, or, on the con-

trary, very small, we may consider an event with such probability as

practically certain in the first case, and almost impossible in the second.

The reason is purely empirical.

To illustrate what we mean, let us consider an indefinite series of

independent trials, in which the probability of a certain event remains

constantly equal to It can be shown that if the number of trials

is, for instance, 40,000 or more, we may expect with a probability > 0.999

that the relative frequency of the event will differ from by less than

0.01. In other words, we are entitled to bet at least 999 against 1 that

the actual number of occurrences will lie between the limits 0.49n and
O.Sln if n ^ 40,000. If we could make a positive statement of this

kind without any mention of probability, we should be offering an ideal

scientific prediction. However, our knowledge in this case is incomplete
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and all we are entitled to state is this: we are more sure to be right in

predicting the above limits for the number of occurrences than in expect-

ing to draw a white ball from an urn containing 999 white and only 1

black ball

In practical matters, where our actions almost never can be directed

with perfect confidence, even incomplete knowledge may be taken as a

sure guide. Whoever has tried to win on a single ticket out of 10,000

knows from experience that it is virtually impossible. Now the convic-

tion of impossibility would be still greater if one tried to win on a single

ticket out of 1,000,000.

In the light of such examples, we understand what value may be

attached to statements derived from Bernoulli's theorem: Although the

fact we expect is not bound to happen, the probability of its happening

is so great that it may really be considered as certain. Once in a great

while facts may happen contrary to our expectations, but such rare excep-

tions cannot outweigh the advantages in everyday life of following the

indications of Bernoulli's theorem. And herein lies its immense practical

value and the justification of a science like the theory of probability.

It should, however, be borne in mind that little, if any, value can be

attached to practical applications of Bernoulli's theorem, unless the

conditions presupposed in this theorem are at least approximately ful-

filled: independence of trials and constant probability of an event for

every trial. And in questions of application it is not easy to be sure

whether one is entitled to make use of Bernoulli's theorem; consequently,

it is too often used illegitimately.

It is easy to understand how essential it is to discover propositions

of the same character under more general conditions, paying especial

attention to the possible dependence of trials. There have been valuable

achievements in this direction. In the proper place, we shall discuss the

more important generalizations of Bernoulli's theorem.

4. When the probability of an event in a single experiment is known,
Bernoulli's theorem may serve as a guide to indicate approximately how
often this event can be expected to occur if the same experiments are

repeated a considerable number of times under nearly the same condi-

tions. When, on the contrary, the probability of an event is unknown
and the number of experiments is very large, the relative frequency of

that event may be taken as an approximate value of its probability.

Bernoulli himself, in establishing his theorem, had in mind the approxi-

mate evaluation of unknown probabilities from repeated experiments.

That is evident from his explanations preceding the statement of the

theorem itself and its proof. Inasmuch as these explanations are interest-

ing in themselves, and present the original thoughts of the great discov-

erer, we deem it advisable here to give a free translation from Bernoulli's
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book. After calling attention to the fact that only in a few cases can
probabilities be found a priori, Bernoulli proceeds as follows:

So, for example, the number of cases for dice is known. Evidently there are

as many cases for each die as there are faces, and all these cases have an equal

chance to materialize. For, by virtue of the similitude of faces and the uniform

distribution of weight in a die, there is no reason why one face should show up
more readily than another, as there would be if the faces had a different shape

or if one part of a die were made of heavier material than another. So one knows
the number of cases when a white or a black ticket can be drawn from an urn,

and besides, it is known that all these cases are equally possible, because the num-
bers of tickets of both kinds are determined and known, and there is no apparent

reason why one of these tickets could be drawn more readily than any other.

But, I ask you, who among mortals will ever be able to define as so many cases,

the number, e.g., of the diseases which invade innumerable parts of the human
body at any age and can cause our death? And who can say how much more
easily one disease than another—plague than dropsy, dropsy than fever— can

kill a man, to enable us to make conjectures about the future state of life or

death? Who, again, can register the innumerable cases of changes to which the

air is subject daily, to derive therefrom conjectures as to what will be its state

after a month or even after a year? Again, who has sufficient knowledge of the

nature of the human mind or of the admirable structure of our body to be able,

in games depending on acuteness of mind or agility of body, to enumerate cases

in which one or another of the participants will win? Since such and similar

things depend upon completely hidden causes, which, besides, by reason of the

innumerable variety of combinations will forever escape our efforts to detect

them, it would plainly be an insane attempt to get any knowledge in this fashion.

However, there is another way to obtain what we want. And what is impossi-

ble to get a priori, at least can be found a posteriori; that is, by registering the

results of observations performed a great many times. Because it must be pre-

sumed that something may occur or not occur, as many times as it had previously

been observed to occur or not occur under similar conditions. For instance, if,

in the past, 300 men of the same age and physical build as Titus is now, were

investigated, and it were found that 200 of them had died within a decade, the

others continuing to enjoy life past this term, one could pretty safely conclude

that there are twice as many cases for Titus to pay his debt to nature within the

next decade than to survive beyond this term. So it is, if somebody for many
preceding years had observed the weather and noticed how many times it was

fair or rainy; or if somebody attended games played by two persons a great many
times and noticed how often one or the other won; by these very observations he

would be able to discover the ratio of cases which in the future might favor the

occurrence or failure of the same event under similar circumstances.

And this empirical way of determining the number of cases by experiments is

neither new nor unusual. For the author of the book ^^Ars cogitandi,” a man
of great acumen and ingenuity, in Chap. 12 recommends a similar procedure,

and everybody does the same in daily practice. Moreover, it cannot be con-

cealed that for reasoning in this fashion about some event, it is not sufficient to
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make a few experiments, but a great quantity of experiments is required; because

even the most stupid ones by some natural instinct and without any previous

instruction (which is rather remarkable) know that the more experiments are

made, the less is the danger to miss the scope.

Although this is naturally known to anyone, the proof based on scientific

principles is by no means trivial, and it is our duty now to explain it. However,

I would consider it a small achievement if I could only prove what everybody

knows anyway. There remains something else to be considered, which perhaps

nobody has even thought of. Namely, it remains to inquire, whether by thus

augmenting the number of experiments the probability of getting a genuine ratio

between numbers of cases, in which some event may occur or fail, also augments

itself in such a manner as finally to surpass any given degree of certitude; or

whether the problem, so to speak, has its own asymptote; that is, there exists a

degree of certitude which never can be surpassed no matter how the observations

are multiplied; for instance, that it never is possible to have a probability greater

than >1, or % that the real ratio has been attained. To illustrate this by an

example, suppose that, without your knowledge, 3,000 white stones and 2,000

black stones are concealed in a certain urn, and you try to discover their numbers

by drawing one stone after another (each time putting back the stone drawn

before taking the next one, in order not to change the number of stones in the

urn) and notice how often a white or a black stone appears. The question is,

can you make so many drawings as to make it 10, or 100, or 1,000, etc., times

more probable (that is, morally certain) that the ratio of frequencies of white and

black stones will be 3 to 2, as is the case with the number of stones in the urn,

than any other ratio different from that? If this were not true, I confess nothing

would be left of our attempt to explore the number of cases by experiments.

But if this can be attained and moral certitude can finally be acquired (how that

can be done I shall show in the next chapter), we shall have cases enumerated a

posteriori with almost the same confidence as if they were known a priori. And
that, for practical purposes, where ‘‘morally certain” is taken for “absolutely

certain” by Axiom 9, Chap. II, is abundantly sufficient to direct our conjectures

in any contingent matter not less scientifically than in games of chance.

For if instead of an urn we take the air or the human body, that contain in

themselves sources of various changes or diseases as the urn contains stones, we
shall be able in the same manner to determine by observations how much more
likely one event is to happen than another in these subjects.

To avoid misunderstanding, one must bear in mind that the ratio of cases

which we want to determine by experiments should not be taken in the sense of a

precise and indivisible ratio (for then just the contrary would happen, and the

probability of attaining a true ratio would diminish with the increasing number of

observations) but as an approximate one; that is, within two limits, wliich,

however, can be taken as near as we wish to each other. For instance, if, in the

case of the stones, we take pairs of ratios and 29^00 or and

etc., it can be shown that it will be more probable than any degree of

probability that the ratio found in experiments will fall within these limits than
outside of them. Such, therefore, is the problem which we have decided to

publish here, now that we have struggled with it for about twenty years. The
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novelty of this problem as well as its great utility, combined with equal difficulty,

may add to the weight and value of other parts of this doctrine.
—

''Ars Conjec-

tandi/' pars quarta, Cap. IV, pp. 224-227.

Application to Games of Chance

5. One of the cases in which the conditions for application of Ber-

noulli’s theorem are fulfilled is that of games of chance. It is not out

of place to discuss the question of the commercial values of games from
the standpoint of Bernoulli’s theorem. '^Game of chance” is the term

we apply to any enterprise which may give us profit or may cause us

loss, depending on chance, the probabilities of gain or loss being known.

The following considerations can be applied, therefore, to more serious

questions and not only to games played for pastime or for the sake of

gaining money, as in gambling.

Suppose that, by the conditions of the game, a player can win a

certain sum a of money, with the probability p; or can lose another

sum 6 with the probability g = 1 — p.

If this game can be repeated any number of times under the same
conditions, the question arises as to the probability for a player to gain

or lose a sum of money not below a given limit. Let us denote by n
the total number of games, and by m the number of times the player

wins. Considering a loss as a negative gain, his total gain will be

K — ma — (n — m)b.

It is convenient to introduce instead of m another number a defined by

a — m — np

and called discrepancy.” Expressed in terms of a the preceding expres-

sion for the gain becomes

The expression

K = n(pa “ qb) + (a + b)a.

E ^ pa — qb

entering as the coefficient of n has, as we shall see,' an important bearing

on the conclusion as to the commercial value of the game. It is called the

^hnathematical expectation” of the player. Suppose at first that this

expectation is positive. By Bernoulli’s theorem the probability for a

discrepancy less than —m, e being an arbitrary positive number, is

smaller than any given number, provided, of course, the number of games
is sufficiently large. At the same time, with the probability approaching

1 as near as we please, we may expect the discrepancy to be ^ — ne.

However, if this is the case, the total gain will surpass the number

n{E — e{a + b)]
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which, for sufficiently large n, itself is greater than any specified positive

number. It is supposed, of course, that e is small enough to make the

difference

E - e{a + b)

positive. And that means that the player whose mathematical expecta-

tion is positive may expect with a probability approaching certainty as

near as we please to gain an arbitrarily large amount of money if nothing

prevents him from playing a sufficient number of games.

On the contrary, by a similar argument, we can see that in case of

a negative mathematical expectation, the player has an arbitrarily small

probability to escape a loss of an arbitrarily large amount of money,

again under the condition that he plays a sufficiently large number of

games.

Finally, if the mathematical expectation is 0, it is impossible to make
any definite statement concerning the gain or loss by the player, except

that it is very unlikely that the amount of gain or loss will be considerable

compared with the number of games.

It follows from this discussion that the game is certainly favorable

for the player if his mathematical expectation is positive, and unfavorable

if it is negative. In case the mathematical expectation is 0, neither

of the parties participating in the game has a decided advantage and then

the game is called equitable. Usually, games serving as amusements are

equitable. On the contrary, all of the games operated for commercial

purposes by individuals or corporations are expressly made to be profita-

ble for the administration; that is, the mathematical expectation of the

administration of a game operated for lucrative purposes is positive at

each single turn of the game and, correspondingly, the expectation of any

gambler is negative. This confirms the common observation that those

gamblers who extend their gambling over large numbers of games are

almost inevitably ruined. At the same time, the theory agrees with

the fact that great profits are derived by the administrations of gaming
places.

A good illustration is afforded by the French lottery mentioned on
page 19, which, as is well known, was a very profitable enterprise operated

by the French government. Now, if we consider the mathematical

expectation of ticket holders in that lottery, we find that it was negative

in all cases; namely, denoting by M the sum paid for tickets, we find the

following expectations:

On 1 ticket — 1)M == — JM,
On 2 tickets (fff — 1)^ =
On 3 tickets

and so forth.
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On the other hand, the expectation of the administration was always

positive, and because of the great number of persons taking part in this

lottery, the number of games played by the administration was enormous,

and it was assured of a steady and considerable income. This was an

enterprise avowedly operated for the purpose of gambling, but the same
principles underlie the operations of institutions having great public

value, such as insurance companies, which, to secure their income, always

reserve certain advantages for themselves.

Experimental Verification of Bernoulli’s Theorem

6. Bernoulli’s theorem, like any other mathematical proposition, is

a deduction from ideal premises. To what extent these premises may be

considered as a good approximation to reality can be decided only by
experiments. Several experiments established for the purpose of testing

various theoretical statements derived from general propositions of the

theory of probability, are reported by different authors. Here we shall

discuss those purporting to test Bernoulli’s theorem.

I. Buffon, the French naturalist of the eighteenth century, tossed a

coin 4,040 times and obtained 2,048 heads and 1,992 tails. Assuming

that his coin was ideal, we have a probability of for either heads or

tails. Now, the relative frequencies obtained by his experiments are:

Iflf = 0.507 for heads

= 0.493 for tails

and they differ very little from the corresponding probabilities, 0.500.

In this case, the conclusions one might derive from Bernoulli’s theorem

are verified in a very satisfactory manner.

II. De Morgan, in his book ^^Budget of Paradoxes” (1872), reports

the results of four similar experiments. In each of them a coin was

tossed 2,048 times and the observed frequencies of heads were, respec-

tively, 1,061, 1,048, 1,017, 1,039. The relative frequencies corresponding

to these numbers are

mi = 0.518; mi = 0.512; Wd = 0.497; Hff = 0.507.

The agreement with the theory again is satisfactory.

III. Charlier, in his book Grundziige der mathematischen Statistik,”

reports the results of 10,000 drawings of one playing card out of a full

deck. Each card drawn was returned to the deck before the next draw-

ing. The actual result of these experiments was that black cards

appeared 4,933 times, and consequently the frequency of red cards was

5,067. The relative frequencies in this instance are:

= 0.4933 for a black card

vViAftr = 0.5067 for a red card
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and they differ but slightly from the probability, 0.5000, that the card

drawn will be black or white. The agreement between theory and experi-

ment in this case, too, is satisfactory.

IV. The author of this book made the following experiment with

pla3dng cards: After excluding the 12 face cards from the pack, 4 cards

were drawn at a time from the remaining 40, and the number of trials

was carried to 7,000. The number of times in each thousand that the

four cards belonged to different suits, was:

I II III IV V VI VII

113 113 103 105 105 118 108

Altogether the frequency of such cases was 765 in 7,000 trials, whence

we find for the relative frequency

~ 0.1093

while the probability for taking 4 cards belonging to different suits is

im = 0.1094.

V. In J. L. Coolidge’s ^^Introduction to Mathematical Probability,

one finds a reference to an experiment made by Lieutenant R. S. Hoar,

TJ.S.A., but the reported results are incomplete. The author of this book

repeated the same experiment which consisted in 1,000 drawings of 5 cards

at a time, from a full pack of 52 cards. The results were : 503 times the

5 cards were each of different denominations; 436 times 2 were of the same

denomination with 3 scattered; 45 times there were 2 pairs of 2 different

denominations and 1 odd card; 14 times 3 were of the same denomination

with 2 scattered; 2 times there were 2 of one denomination and 3 of

another. The remaining possible combination, 4 cards of the same
denomination with 1 odd, never appeared. The probabilities of these

different cases are, respectively,

iiil = 0.507; HK = 0.423; M = 0.048;

= 0 .021
;

= 0 .001
;

= 0 .000 .

The corresponding theoretical frequencies are 507, 423, 48, 21, 1, 0,

while the observed frequencies were 503, 436, 45, 14, 2, 0. The dis-

crepancies are generally small and the greatest of them, 13, is still within

reasonable limits. Deeper investigation shows that the probability that

a discrepancy will not exceed 13 is about hence, the observed deviation

of 13 units cannot be considered abnormal.

VI. Bancroft H. Brown published, in the American Mathematical

Monthly
,

page 351, the results of a series of 9,900 games of craps.

This game is played with two dice, and the caster wins unconditionally

if he produces 7 or 11 points, which are called ^'naturals”
;
he loses the
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game in case of 2, 3, or 12 points, called craps. But if he produces

4, 5, 6, 8, 9, or 10 points, he does not win, but has the right to cast the

dice an unlimited number of times until he throws the same number of

points that he had before, or until he throws a 7. If he throws 7 before

obtaining his point, he loses the game; otherwise he wins.

It is a good exercise to find the probability of winning this game.

It is

m = 0.493

that is, a little less than 3^^. Multiplying the number of games, in our

case 9,900, by this probability, we find that the theoretical number of

successes is 4,880 and of failures, 5,020. Now, according to Bancroft H.

Brown, the actual numbers of successes and losses are, respectively,

4,871 and 5,029. The discrepancy

4871 - 4880 = -9

is extremely small, even smaller than could reasonably be expected.

The same article gives the number of times craps'^ were produced;

namely, 2 appeared 259 times, 3 appeared 508 times, and 12 appeared

293 times, making the total number of craps 1,060. The probability

of obtaining craps is

^ + A" + ?V ~ i

hence, the theoretical number of craps should be 1,100. The discrepancy,

1060 ~ 1100 = —40, is more considerable this time but still lies within

reasonable limits.

VII. E. Czuber made a complete investigation of lotteries operated

on the same plan as the French lottery, in Prague between 1754 and 1886,

and in Briinn between 1771 and 1886. The number of drawings was
2,854 in Prague and 2,703 in Briinn. The probability that in each draw-

ing the sequence of numbers is either increasing or decreasing, is

= 0.01667

while the observed relative frequency of such cases was

Prague: 0.01612; Briinn: 0.01739

and in both places combined

0.01674.

The probabilities that among five numbers in each drawing there is

none or only one of the numbers 1, 2, 3, ... 9, are, respectively.

0.58298 and 0.34070.
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The correspoadiag relative frequencies were

Prague: 0.58655 and 0.32656

Briinn: 0.57899 and 0.34591

and in both places combined

0.58183 and 0.33587, respectively.

The probability of drawing a determined number is Now, according

to Czuber, for the lottery in Prague the actual number of occurrences for

single tickets varied from 138 (for No. 6) to 189 (for No. 83), so that for

all tickets the discrepancy varied from —20 to 31. Besides, there were

only 16 numbers with a discrepancy greater than 15 in absolute value.

All these results stand in good accord with the theory.

VIII. One of the most striking experimental tests of Bernoulli's

theorem was made in connection with a problem considered for the first

time by Buffon. A board is ruled with a series of equidistant parallel

lines, and a very fine needle, which is shorter than the distance between

lines, is thrown at random on the board. Denoting by I the length of

the needle and by h the distance between lines, the probability that the

needle will intersect one of the lines (the other possibility is that the

needle will be completely contained within the strip between two lines) is

found to be

21

The remarkable thing about this expression is that it contains the

number tt = 3.14159 * •
• expressing the ratio of the circumference of a

circle to its diameter. In the appendix we shall indicate how this expres-

sion can be obtained, because in this problem we deal with a different

concept of probability.

Suppose we throw the needle a great many times and count the

number of times it cuts the lines. By Bernoulli's theorem we may expect

that the relative frequency of intersections will not differ greatly from
the theoretical probability, so that, equating them, we have the means of

finding an approximate value of x.

One series of experiments of this kind was performed by R. Wolf,

astronomer in Zurich, between 1849 and 1853. In his experiments the

width of the strips was 45 mm., and the length of the needle was 36 mm.
Thus the theoretical probability of intersections is

™ = 0.5093.
45x
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The needle was thrown 5,000 times and it cut the lines 2,532 times;

whence, the relative frequency

M-l = 0.5064.

The agreement between the two numbers is very satisfactory. If,

relying on Bernoulli's theorem, we set the approximate equation

72^ = 0.5064,
457r

'

we should find the number 3.1596 for tt, which differs from the known
value of TT by less than 0.02.

In another experiment of the same kind reported by De Morgan in

the aforementioned book, Ambrose Smith in 1855 made 3,204 trials with

a needle the length of which was % of the distance between lines. There

were 1,213 clear intersections, and 11 contacts on which it was difficult

to decide. If on this ground, we should consider half of them as inter-

sections, we should obtain about 1,218 intersections in 3,204 trials, which

would give the number 3.155 for tt. If all of the contacts had been treated

as intersections the result would have been 3.1412—very close to the

real value of tt.

In an excellent book ^^Calcolo delle Probabilita,^^ vol. 1, page 183,

1925, by G. Castelnuovo, reference is made to experiments performed by
Professor Reina under whose direction a needle of 3 cm. in length was

thrown 2,520 times, the distance between lines being 6 cm. Taking into

account the thickness of the needle, the probability of intersection was
found to be 0.345, while actual experiments gave the relative frequency

of intersections as 0.341.

Appendix

Buffon’s Needle Problem. Let h be the width of the strip between

two lines and I < h the length of the needle. The position of the needle

can be determined by the distance x of its middle point from the nearest

line and the acute angle <p formed by the needle and a perpendicular

dropped from the middle point to the line. It is apparent that x may
vary from 0 to h/2 and (p varies within the limits 0 and x/2. We cannot

define in the usual way the probability of the needle cutting the line, for

there are infinitely many cases with respect to the position of the needle.

However, it is possible to treat this problem as the limiting case of

another problem with a finite number of possible cases, where the usual

definition of probability can be applied.

Suppose that h/2 is divided into an arbitrary number m of equal

parts d — h/2m and the right angle ir/2 into n equal parts co = 7r/2n.

Suppose, further, that the distance x may have only the values

0, 5, 25, . . . md
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and the angle <p the values

0, OJ, 26J, nco.

This gives

N = (m + l)(?z + 1)

cases as to the position of the needle, and it is reasonable to assume that

these cases are equally likely. To find the number of favorable cases, we
notice that the needle cuts one of the lines if x and ip satisfy the inequality

X < <p.

The number of favorable cases therefore, is equal to the number of

systems of integers i, j satisfying the inequality

W) g
cos jo>

supposing that i may assume only the values 0, 1, 2, ... m and j only

the values 0, 1, 2, . . . n. Because we suppose I < h the greatest

value of i satisfying condition (A) is less than m and we can disregard

the requirement that i should be Now for given j there are A; + 1

values of i satisfying (A) if denotes the greatest integer which is less

than

^cosico.

In other words, k is an integer determined by the conditions

k < cos jo) ^ k + 1.
Ao

The number of possible values for i corresponding to a given j can

therefore be represented thus

rnj = ™ cos jo3 +

where t?, may depend on j but for all y is ^0 and < 1. Taking the sum
of all the m,* corresponding to y = 0, 1, 2, . . . n, we obtain the number
of favorable cases

M = ^(1 + cos 0) + cos 2a? + + cos noo) + nQ

where 0 again is a number satisfying the inequalities
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But, as is well known,

1 + cos 0) + cos 2a; + * *
* + cos no; = ^ + ——

^

2 o • ^2sm2

or, because a; = ^
^ 2n

1 + cos a; + COS 2a; + • *
* + cos no; = ^

- cot

therefore

M = cot
I + ^ + ne.

Dividing this by iV = (m + 1)(^ + 1) and substituting for 5 and a;

their expressions

^ h TT

2m ^ 2n

we obtain the probability in the problem with a finite number of cases

^ — JL ^ 4n J_ m 1 n0
N 2h m \ 71 \ 2h m \ ti \ (?2.-f-l) (m -f- 1)

The probability in Buffon^s problem will be obtained by making m
and n increase indefinitely in the above expression. Now, since

Thus we arrive at the expression of probability

V =
hir

in Buffon^s needle problem.
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Problems for Solution

Another very simple proof of Bernoulli's theorem, due to Tshebysheif (1821-

1894), is based upon the following considerations:

1.

Prove the following identities

:

n

^ Pm(w — np) = 0,

m = 0

n

V Tni(m - np)2 = npq,

w = 0

Indication of the Proof. Differentiate the identity

n

e-npu(^pQU ^ q)n —

ŵ= 0

twice with respect to u and set u — 0.

2.

If Q is the probability of the inequality |m — wp| ^ ne prove that

ne^

Indication of the Proof. In the identity

n

^ Tmim —npY = npq

m = 0

drop all the terms in which \m — np\ <n€ and in the remaining terms replace

(m — np)2

by The resulting inequality

Im—

is equivalent to the statement.

3. Prove that

P > 1 — p

if n > pq/7}€^.

Indication of the Proof. P — 1 — Q, Q < pq/ne^ and pqfn^^ < t? if ti > pqlp^.
The following two problems show how probability considerations can be used in

proving purely analytical propositions.

4. 8. Bernstein’s Proof of Weierstrass’ Theorem. The famous theorem due to Weier-

strass states that for any continuous function /(a;) in a closed interval a S x there

exists a polynomial P{x) such that

\f{x) ^P{x)\<<r

for a ^ a; ^6 where o* is an arbitrary positive number. By a proper linear trans-

formation the interval (a, h) can be transformed into the interval (0, 1). According

to S. Bernstein, the polynomial

n

p{x)

=

OT= 0
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for sufficiently large n satisfies the inequality

m -P(a:)l <<r

uniformly in the interval 0 ^ re ^ 1.

Indication of the Proof. For re = 0 and a: = 1 we have /(O) = F(0) and

/(I) = F(l).

It suffices to prove the statement for 0 < a; < 1. Let rr be a constant probability in

n independent trials. We have

n

(a) f(x) —P(x) = C^x^iX — x)^~^

m = 0

By the property of continuous functions, there is a number e corresponding to any
positive number <r such that

whenever

\x' — x\ < e (0 ^ x\ X ^ 1).

Also, there exists a number M such that |/(.t)| ^ ilf for 0 ^ a; ^ 1. From equation

(a) we get

\f{x) -P(x)\ ^ -P+2MR

where P and R are, respectively, the probabilities of the inequalities

^ e.

m
' < e and

j

m
X X

n n

Now F < 1 and

R < 7)

if n > lf4e^r]. Take rj = cr/4M; then

|/(a^) - F(a;)l < cr

if

n >
M

6. Show that

J,—
x'^0- — xY~'^dx

m
6

n

a;”^(l — xY'"

> 1 -
2(n + l)e^

m m
provided 0 < m < n and 6>0, \~ € < I (Castelnuovo).

n n
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Indication of the Proof, By Prob. 6, Chap. IV, page 72, the ratio

— xy-^dx

- xy-^^dx

represents the probability Q of at least m + 1 successes in a series of n + 1 inde-

pendent trials with constant probability

Set

whence

But

Hence

m
p = - - e.

m -h 1 — (n l)p H- (ti + 1)<7'

n ^ m
(T
— rTT -h € > e.

n{n -h 1)

(n -f 1)0-2 -j- i)g2

^ 35^(1 _ xy-^dx

— xy~^dx

and by a similar argument

j
^m(i _ xy'^^dx

m
Z+‘

J^V(1 - a:)"-»dx
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CHAPTER VII

APPROXIMATE EVALUATION OF PROBABILITIES IN
BERNOULLIAN CASE

1. In connection with Bernoulli’s theorem, the following important
question arises: when the number of trials is large, how can one find, at
least approximately, the probability of the inequality

where e is a given number? Or, in a more general form: How can one
find, approximately, the probability of the inequalities

I ra SV
where I and V are given integers, the number of trials n being large?

The exact formula for this probability is

& — V

p =

where Tgj as before, represents the probability of s successes in n trials.

While this formula cannot be of any practical use when n and V — I

are large numbers, yet it is precisely such cases that present the greatest

theoretical and practical interest. Hence, the problem naturally arises

of substituting for the exact expression of F an approximate formula

which will be easy to use in practice and which, for large w, will give a

sufl&ciently close approximation to P. De Moivre was the first suc-

cessfully to attack this difficult problem. After him, in essentially the

same way, but using more powerful analytical tools, Laplace succeeded

in establishing a simple approximate formula which is given in all books

on probability.

When we use an approximate formula instead of an exact one, there

is always this question to consider: How large is the committed error?

If, as is usually done, this question is left unanswered, the derivation of

Laplace’s formula becomes an easy matter. However, to estimate the

error comparatively long and detailed investigation is required. Except

for its length, this investigation is not very difficult.

2. First we shall present the probability Ts in a convenient analytical

form. The identity

F{t) - (pt + qy = To + Tit + T^t^ + . .
. + TnF

119
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after substituting t = becomes

F (/•<’) = To + Tie^ + + • •
• + T„e’‘^.

Multipl3dng it by e”“«’ and integrating between —t and r, we get

e-^F{e^)d<p = 2tT,

because for an integral exponent h

Thus

0 if

2t if ifc = 0.

T, F(fi^)e~^^d<p

and this is the expression for Ts suitable for our purposes. To find the

sum
a

P =
S=il

we observe first that

1 —

On the other hand, the complex number F{e^) can be presented in

trigonometrical form, thns:

whence

or, because P is real.

Finally, because R is an even function of <p and 0 is an odd one, we can

extend the integration over the interval 0, tt on the condition that we



Sec. 3] APPROXIMATE EVALUATION OF PROBABILITIES

double the result. Thus we obtain

121

l + V \
—o—T]

sin <p

-dcp.

It is convenient to introduce instead of I and I' two numbers f i and f2

defined by

Z = np + i V = np - i + f2V^
where Bn = npq. Setting further

0 = np<p + X,

P can be presented as

P Pi

where Pi and P 2 are obtained by taking f = f 1 and f f2 in the integral

(1 ) j . 1 f B
27rJo sin -^(p

3. Our next aim is to establish upper and lower limits for R.

Evidently

Now

log p

n / \n
jg = (p

2 _j_ g
2 ^ 2pq COS = f 1 — 4tpq sin^ ~

1 — 4pg sin'in^
1^

= -2pg sin^
|
- sin^ |

-

g(4pg)5 sin®
|
-

whence

log p < — 2pg sin^

Since < 7r/2, we have

and consequently

or

(2)

log , <

2pg

p < e
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for all values of cp in the interval of integration. On the other hand, we
have

sin -K > I - To > 0 for < 24

and

48

sm2

2̂ 4

which gives another upper hound for p:

(3) p <

The corresponding upper bounds for R will be

(4)

(5)

B <e

To find a lower bound for R we shall assume ^ g 7r/2. We can

present log p thus:

log p = -
|(4pg)2 sin^

^
- sin^

||
.2^1

- g(4p?)® sin® I
-

On the other hand,

g(4pg)® sin®
| +

i(4pg)^ sin®
| +

. . . < -
i(4pg)® sin®

| ^

1 — 4pg sin^
|

<^(4pg)^sin®|

and

so that

(ly
<P ^ 1 • A <P

2>3 ®“ 2

2pg ~ sin^ ^(4pg)5 sin®
|

^ 2pg
> sin^4 _i(

2/ 6
'

~ |(4pg)® sin® ^ sin^ ||l — 32p2g® sin^
|}

^ ®

and consequently

log P > _ i(42,g)2 giQ4 I > P? 2 4

2 V'
2

~ “
4
"^
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if ^ g Hence,

(6) 7-» V.
—~Bn<p^—\pqBn(p^

K > e ^ ^

and this is valid for (p S 7r/2.

4. Let r be defined by

Assuming Bn ^ 25 from now on, we shall have,

r" ^ I

and a fortiori r <Tr(2. Let us suppose now that (p varies in the interval

0 ^ ^ ^ r. By inequality (6) we shall have

E - - l) > - >

1 r> 4

because e~^ — 1 > —x for :r > 0 and pq ^
On the other hand, using inequality (5), we find that

R - }2i‘^ -if < f'" <

Since

Bnr^ 3

1^24 =ie8<i.6^ —
6 ^ ^ 4 -

From the two inequalities just established it follows that

Ir

B - 2(7)

in the interval

0 ^ <p ^ r.

5, We turn now to the angle 0. Evidently

Bn<p^

^ , p sm<p
0 = n arc tg —

7

== no)
^ q + p COB (p

where

o) = arc tg
p sm <p

q + p cos <p

By successive derivations with respect to (p we find
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— — + pq cos (p
, __ yg(p — q) sin (p

d<p + 2pq cos <p + dcp^ (p^ + 2pq cos <p + q^)^

— = 'nrrr'n ~ + (1 - 2pq) COS <p - 2pq COS" <p

^^3 U V q.)
^^2 2pq cos <p + q^y

d^o3 _ ( _ \ sin — 1 + 4pg+20j:)V+8pg(l— 2pg) cos cos^ (p]

d(p^ ^ {p^+2pq cos <p+q^y

and for ^ = 0

1e
0

= Pi
0

II

(S).
«<»’ -

q)-

Furthermore, one! easily verifies that in the interval 0 ^ VII

d^o>

dv?
HA

001

CO 1
3l(l - 4pg sin*

|)

d*oo

d<p‘^
g 2pq\p - 5'|^1

- 4^2 sin* ip-

Hence, applying Taylor’s formula and supposing 0 ^ ^ ir, we get for %

(8) X = iSn(p - q)i(? +
where

(9) \M\ < -^Bnlp - ?l(i - V<P'^)~\

or

(10) X = L^

where

(11) \L\ < xV-B„1p - 2l(i -

Using inequalities (9) and (11), we easily find

(12) sin {^y/Wnq> - x) = sin {t^/Rn<p) — lBn{p — q)(f^ cos (fV^^?) + r

where

(13) |r| < - g|(l -- pqr^) V® + - qYil - pqT^)-^<p^j

provided 0 ^ ^ ^ r.

6. To find an appropriate expression of the integral J we split it into

two integrals, Ji and J'2 ,
taken respectively between limits 0, r and r, tt.

We have
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because sin ^ Let ti = t then by inequality (4)
Z TV Z

2Bn ,

^ ^ ^ \I‘K
ri'i

But for positive x the following inequality holds:

(14)

consequently
/;

e-^^du ^
u ^

2x‘^’

"" T>dT ^ e-i-®”’’*

< “
ZBl

Noting that i?(^) is a decreasing function of tp we have for t g ^ g ri

R{p) g R{r) < fe-sVF”.

Hence,

and combining this inequality with the one previously established, we
have finally

(15) |J,l<01og| + :^)c-ev^.

7. More elaborate considerations are necessary to separate the

principal term and to estimate the error term in Ji. Making use of the

inequality

sin X x\
<

6 sin X

we can present Ji thus:

Ji

where

sin (^\/Wn<p — x)
d<p “(*" A

|A|<
-Jo'

R<pd<p)

487r sin
z

and, because R < in the interval Q < <p <r
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Since ^ % we find by direct numerical calculation

< 0.0205,

327r sin
^

and so, iSnally,

lAl < 0.0205^-1.

8* Referring now to inequality (7), we can write

2 sin ^ 2 + A,
AttJo (p 2xJo <p

where

Combining this with the result of the preceding section, we can present

Ji thus

(16) ^1=1-
~
.Ad<p + As

Akjo ‘P

and

lAsI < 0.06055-b

9. To simplify the integral in the right member of (16), we substitute

for sin (f-\/jB„^ — x) its expression (12). Taking into account inequal-

ity (13), we get (17):

2 rVi.„,.sin (rV^y - x)^ ^ 2 rV,.,.,.gin_(r_̂ ^)^ _
27rJo ip 2xJo ip

~
Jo

® ^ B„(p)dtp -f As

where

\M <^B„\p - s|(l
-

-f

But

T
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and so

I^ 3L< - g|(l - pqr^)-^ + ^(p - q^il - pqr^y^B-K

Now pq S S Bn 25, consequently

--4=5-i(l - pqr^)-* g < 0.0385.
4V2ir 20V^VlV

On the other hand,

X - pr> * 1 - 1{(^)’ - (s-’)} - m + 1*!” - ’>’•

and for positive x the maximum of

is attained for x^ — ^J4 zj whence it follows that

Q4t \v ?1(1 - PSr2)-« < 0.051.

Taking into account all this, we have

lAsI < 0.09ip - q\B-^.

10. As to integrals in the right-hand member of (17) we can write

(18) ^ f ^ f -I- A4
^TTjo <P 2tJo (p

(19) cos (sVK<{>)d<p =

" (tVK<p)dv + As

where

and

because

!A4^
Trjr <p Sir

iAsI < ^ ^ r
6x 'bU

e'^Vdu
7r\/S

f.
e~^%Hu < xe~^^
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for X > 1, as can easily be proved. Finally, taking into account (15),

(16), (17), (18), (19). we get

(20)

+

+

J Af"
2irJo

^ 0.065 + 0.09|p - q\ ,

cos {tVK<p)d>p

since for Bn ^ 25

^ log I -{-
-I-

A»! -f Aai < i.
4
iog

2
-1-

g 3^
+ ^ 2

It now remains to evaluate definite integrals in (20). We have

(
21)

(22)

2t,

^ 00

Jo
^

^sin (rV^y)
^^ _ _2_ 2 f

“
.si

2xjo
® “

.sin

BniV - $)

Qtt

^ 00

cos (X\^nT)d<() =

_£JZi
Ott'v/S,
J
n^O

oO -U^

e ^^2 cos

Differentiating the well-known integral

X'
g-a»2

(JOS hxdx _ 1 /ir

2V o'

- _A“
;e~^“ (a > 0)

twice with respect to h, and after that substituting a = 3^, 6 = f, we
find for (22) this expression:

V - <1

(1 - i-2)e-if^

W^Bn
On the other hand, an integral of the type

L{a)
.Sin au

u
du

can be reduced to a so-called “probability integral/^ In fact, the
derivation with respect to a gives

a2CO 1
Zyji

0 e 2 cos audu = ^

and since L(0) = 0,

L(o) = ^V^fje-i-^du.
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Consequently, integral (21) can be reduced to

V^Jo
Having found an approximate expression of the integral J after sub-

stituting in it f 2 and f i for f and taking the difference of the results, we
find the desired expression of P.

11. The result of this long and detailed investigation can be sum-

marized as follows:

Theorem. Let m he the number of occurrences of an event in a series

of n independent trials with the constant probability p. The probability P
of the inequalities

np + i + f ^ m S rip - ^ +
where extreme members are integers, can be represented in the form

(23) P = + (1

The error term a> satisfies the inequality

< 0.13 + 0.18IP - , 1

npq

provided npq ^ 25.

By slightly increasing the limit of the error term, this theorem can

be put into more convenient form. Let h and t 2 be two arbitrary real

numbers and let P denote the probability of the inequalities

np -f ti\/npq S m ^ np + t^Vnpq.

If the greatest integers contained in

np + t2\^npq and nq — ti\/npq

are respectively, .42 and Ai, the preceding inequalities are equivalent to

n ^ Ai ^ m ^ A 2 .

To apply the theorem, we set

np — i = A2 — np + h'Vnpq “ h
np + I + f ia/npq = n — — np + ti's/npq +

^2 and 9i being, respectively, the fractional

nq — h^/npq. Hence,

^2 — ^2 +

Ti — “
V npq

parts of 7ip + h's/n^ and
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Applying Taylor’s formula, it is easy to verify that

g ™ p

6a/27rnpg
[(I-

ii! _li;
2^- 2 _ (1 - ff)e

2

a/2Trnpq

q - V

Q\/27rnpq

2j

[(

<
0.061

npq

if
21 - tl)e

O.Q69|p — q\<
npq

whence, finally, we can draw the following conclusion: For any two

real numbers h, h, the probability of the inequalities

ti-\/npq S — np ^ U's/npq

can be expressed as follows:

p . ' fV.-* + a - »0e-.-.- + (I - ^
A/27rJ^i A/27rnpg

+ ^- [(1
- - (1 - t\)e-W\ + 0.

Q\/2irnpq

where 62 and di are the respective fractional parts of

np + t2\^npq and nq — ti^/npq

and

|0| < 0.20 + 0.25b - g| ^npq

provided npq ^ 25.

In particular, if ^2 = = t, the probability of the inequality

m — n:

is expressed by
p\ ^ t^/npq

P = Ce-i-^du + 1— + Q
A/ 27rJo A/27rnpg

with the same upper limit for 0. Laplace, supposing that np + t\/npq
is an integer in which case ^2 = 0 and is a fraction less than {npq)“^^,

gives for P the approximate expression

P = 2 r

\/2Trnpq

without indicating the limit of* the error. Evidently Laplace^s formula
coincides with the formula obtained here by a rigorous analysis, save for

terms of the same order as the error term 0.
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To find an approximate expression for the probability P of the

inequality

m i

I P

it suffices to take

t — e

Then
4

IL

p = = C'%-Ku + ?2_ ,

^ du+ + Q
V ^TTJ 0 V ^irnpq

and evidently P tends to 1 as n increases indefinitely. This is the second

proof of Bernoulli’s theorem.

Referring to the above expression for the probability of the inequalities

ti\/npq ^ m — np ^ t2\/npq

and supposing that the number of trials n increases indefinitely while

ti and t 2 remain fixed, we immediately perceive the truth of the following

limit theorem: The prohability of the inequalities

tends to the limit

m — np
t-i rs -

as n tends to infinity.

This limit theorem is a very particular case of an extremely general

theorem which we shall consider in Chap. XIV.
12. To form an idea of the accuracy to be expected by using the

foregoing approximate formulas, it is worth while to take up a few

numerical examples. Let n = 200, p = g = and

95 i m ^ 106 .

The exact expression of the probability that m will satisfy these ine-

qualities is

___
200 ! fm 100 > 99 . 100 - 99 > 98 .

1001100 ! L \101 101 * 102 101 • 102 • 103

100 ’ 99 • 98 • 97 100 • 99 • 98 • 97 • 96 Y
101 * 102 ^ 103 • 104 101 * 102 • 103 • 104 • 105/„

'



132 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. VII

The number in the brackets is found to be 9.995776 and its logarithm to

five decimals

0.99982.

The logarithm of the first factor, again to five decimals, is

2.75088,

whence

log P = T.75070; P = 0.56325,

and this value may be regarded as correct to five decimals. Let us see

now what result is obtained by using approximate formulas. In our

example

t\/npq = = 5; t = -4= = 0.707107
V2

and

2 n --
-4=^\ e Mm = 0.52050.
V^Jo

The additional term
g-0.25

0.04394

and by Laplace’s formula

P = 0.56444.

This is greater than the true value ofP by 0.00119. Now, the theoretical

limit of the error is nearly

= 0.004

so that, actually, Laplace’s formula gives an even closer approximation

than can be expected theoretically.

When npq is large, the second term in Laplace’s formula ordinarily

is omitted and the probability is computed by using a simpler expression:

P = 2 p
V^Jo"

^du.

In our case this expression would give

P = 0.52050

instead of 0.56325 with the error about 0.043, which amounts to about

8 per cent of the exact number. Such a comparatively large error is

explained by the fact that in our example npq = 50 is not large enough.

In practice, when npq attains a few hundreds, the simplified expression for
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P can be used when an accuracy of about two or three decimals is con-

sidered as satisfactory. In general, the larger t is, the better approxima-

tion can be expected.

For the second example, let us evaluate the probability that in 6,520

trials the relative frequency of an event with the probability 'p — %
will differ from that probability by less than e = To find j?, we
have the equation

t\/npq = en

where

n = 6520,

which gives

t

and, correspondingly.

P — if Q — iy € — -gV,

130.4

\/l564.8
3.2965,

2 n --
\

e 0.999021.
V^jo

Since m satisfies the inequalities

3912 - 130.4 ^ m g 3912 -f 130.4

the fractions 0i and are Bi
— = 0.4 and the additional term is

— 0.000009.
*>/3129.67r

Hence, the approximate value of P is

P = 0.999030.

To judge what is the error, we can apply Markoff's method of con-

tinued fractions to find the limits between which P lies. These limits are

0.999028 and 0.999044.

The result obtained by using an approximate formula is unusually good,

which can be explained by the fact that in our example t is a rather large

number. Even the simplified formula gives 0.999021, very near the

true value.

Finally, let us apply our formulas to the solution of the inverse

problem: How large should the number of trials be to secure a probability

larger than a given fraction for the inequality
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Let us take, for example, p = }ij € = 0.01 and the lower limit of proba-

bility 0.999. To find n approximately, we first determine t by the

equation

which gives

2 n
^du == 0.999,

t = 3.291.

Hence,

^ = ^^^^(3.291)2 == 24,066, approximately.

We cannot be sure that this limit is precise, since an approximate formula

was used. But it can serve as an indication that for n exceeding this

limit by a comparatively small amount, the probability in question will

be >0.999. For instance, let us take n = 24,300. The limits for m
being

8,100 - 243 ^ m ^ 8,100 + 243,

we find t from the equation

and correspondingly

t = = 3.3068
\PQ

2 r
V^Jo

t _h!
e ^du 0.999057.

The additional term in Laplace^s formula being 0.000023, we find

P > 0.99908 - 0.00006 > 0.999.

Thus, 24,300 trials surely satisfy all the requirements.

Problems for Solution

1. Find approximately the probability that the number of successes will be con-

tained between 2,910 and 3,090 in 9,000 independent trials with constant probability

Ans, 0.9570 with an error in absolute value <10"'^ [using (23)].

2. In Buffon’s experiment a coin was tossed 4,040 times, with the result that heads

turned up 2,048 times. What would be the probability of having more than 2,050

or less than 1,990 heads? JLna. 0.337,

3. R. Wolf threw a pair of dice 100,000 times and noted that 83,533 times the

numbers of points on the two dice were different. What is the probability of having
such an event occur not less than 83,533 and not more than 83,133 times? Does the

result suggest a doubt that for each die the probability of any number of points was J^?
Am. This probability is approximately 0.0898 and on account of its smallness some
doubt may exist.
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4 . If the probability of an event E is }4t what number of trials guarantees a

probability of more than 0.999 that the difference between the relative frequency of

E and will be in absolute value less than 0.01? Ans. 27,500.

6.

If a man plays 10,000 equitable games, staking $1 in each game, what is the

probability that the increase or decrease in his fortune will not exceed $20 or $50?

(a) 0.166; (5) 0.390.

6. If a man plays 100,000 games of craps and stakes 50 cents in each game, what
is the probability that he will lose less than $300? Ans, About Koo*

7 . Following the method developed in this chapter, prove the following formula

for the probability of exactly m successes in n independent trials with constant

probability p:

^Tvnpq
1 + (g - V){F - 30

'

Oa/npq
+ A

where t is determined by the equation

m — np t's/npq

and

, ,
0.15 4- 0.25b - q\ ,

,,/—

(npqp

provided npq ^ 25.

8

.

Developments of this chapter can be greatly simplified H p ^ q = (sym-

metrical case). In this case one can prove the following statement: The probability

of the inequalities

n 1
,

can be expressed as follows:

—

r

12-v^27rn

where [A] < 1/2^® for w > 16.

9

.

In case of “rare” events, the probability p may be so small that even for a
large number of trials the quantity X — np may be small; for example, 10 or less.

In cases of this kind, approximation formulas of the type of Laplace^s cannot be used
with confidence. To meet such cases, Poisson proposed approximate formulas of a

different character. Let Pm represent the probability that in n trials an event with
the probability p will occur not more than m times. Show that

+
1 •2-3

-{- A = Qm Hh A

where

and

[a! < (e^ -- l)Qm if

IA| < (e^ - 1)(1 - Qn.) if Qm<^

1
X4--7

4 n

2{n — X)
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Indication of the Proof. We have

1

Now, since g = 1 —

X nX2
^ + + ' • +

X

1 • 2 • 3 • • • m

n

(i ‘Yi "'i (i

and

- V ifc-oX
~ - V

< e

^ I.

2 ~izi (x+|)g

yfc«0 ^ ^2(n— X)

Consequently

But

2n.

whence

Fflt <C Qn

On the other hand,

= 6""^
X X2 X’”

1 - 2
‘ 1-¥*3 • • • w

1 == 2 n(re - 1) • •
• (n - M + 1) „
^

gn UpM =

/* = Wl-j-l

== r
X^

ju;s= 7»+ 1

1-2-3

whence

and
1 - P^ < e^(l - Qm)

Pn. > e^Qrr. + 1-6^.

The final statenaent follows immediately from both inequalities obtained for Pm
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10 . With the usual notation, show that

where

e-^^Q
ml

mX — m(m — l)

Q ^ ^ n 2n2 2n (n — m)X3
+ ;

7^3 \]
-m))y3(n X)3 2n(n

Indication of the Proof. Referring to Chap. I, page 23, we have

< 0 < 1 .

m!\ n/ \ 2nJ

T.>4,-X-'L-^rv.
m\\ n) \ n/

But

whence

0-r < e

^ (n. — w)X2
^ n 2n^

, 1 -
2n

< e

m(m— 1)

2n ,

Xm mX {n — m)X^

Tm < — • e
^

ml
2n

On the other hand,

-(n.-»t)
I

^m^X (n — m)X^ (n — m)X^

> e 2(7i-X)2 3(71~X)3

/ \m — l / \w— 1 m(m—-1)

(l--) 2 =(l+— 2 >, 2(X=^.
\ n/ \ n — mj

Hence

mX (n--m)X^ — (n— m)X^

> € n 2n2 2n Z{n-~X)^ 2n(n— m).

and a fortiori

A xy-»^^ _ V — "x — (n — m)X^
__
m(w-— 1)

> e n 2n2 2n
(?i — m)X3

3(?i - X)®

2n{n — m)

If X and m are both small in comparison to n the above-introduced factor Q will be

near L Under such circumstances we may be entitled to use an approximate formula

due to Poisson
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The preceding elementary analysis gives means to estimate the error incurred by using

this formula.

11. Apply the preceding considerations to the ease n == 1,000, p — Hoo» ^

and m = 10. Ans, 0.1256 < Tio < 0.1258. Poisson's formula gives 0.1251—

a

very good approximation. AJo, 0.5807 < Pio < 0.5863. Taking Pio =* 0.583, the

error in absolute value will be less than 3.3 '
10“*^. By a more elaborate method it is

found Pio = 0.5830.
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CHAPTER VIII

FURTHER CONSIDERATIONS ON GAMES OF CHANCE

!• When a person undertakes to play a very large number of games
under theoretically identical conditions^ the inference to be drawn from
Bernoulli's theorem is that that person will almost certainly be ruined

if the mathematical expectation of his gain in a single game is negative.

In case of a positive expectation, on the other hand, he is very likely to

win as large a sum as he likes in a sufficiently long series of games.

Finally, in an equitable game when the mathematical expectation of a

gain is zero, the only inference to be drawn from Bernoulli^s theorem is

that his gain or loss will likely be small in comparison with the number of

games played.

These conclusions are appropriate however, only if it is possible to

continue the series of games indefinitely, wdth an agreement to postpone

the final settling of accounts until the end of the series. But if the

settlement, as in ordinary gambling, is made at the end of each game,

it may happen that even playing a profitable game one will lose all his

money and will have to discontinue playing long before the number of

games becomes large enough to enable him to realize the advantages

which continuation of the games would bring to him.

A whole series of new problems arises in this connection, known as

problems on the duration of play or ruin of gamblers. Since the science

of probability had its humble origin in computing chances of players in

different games, the important question of the ruin of gamblers was
discussed at a very early stage in the historical development of the

theory of probability. The simplest problem of this kind was solved by
Huygens, who in this field had such great successors as de Moivre,

Lagrange, and Laplace.

2. It is natural to attack the problem first in its simplest aspect, and

then to proceed to more involved and difficult questions.

Problem 1. Two players A and B play a series of games, the proba-

bility of winning a single game being p for A and q for B, and each game
ends with a loss for one of them. If the loser after each game gives his

adversary an amount representing a unit of money and the fortunes of

A and B are measured by the whole numbers a and 6, what is the proba-

bility that A (or J?) will be ruined if no limit is set for the number of

games?
139
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Solution. It is necessary first to show how we can attach a definite

numerical value to the probability of the ruin of A if no limit is set for

the number of games. As in many similar cases (see, for instance, Prob.

15, page 41) we start by supposing that a limit is set. Let n be this

limit. There is only a finite number of mutually exclusive ways in which

A can be ruined in n games; either he can be ruined just after the first

game, or just after the second, and so on. Denoting by pi, p 2,
- - . Pn

the probabilities for A to be ruined just after the first, second, . . . nth

game, the probability of his ruin before or at the nth game is

Pi + P2 + • •
• + Pn.

Now, this sum being a probability, must remain <1 whatever n is.

On the other hand, each term of this sum is ^0 for the same reason.

Both remarks combined, show that the series

Pi + P2 + P3 + • • ‘

is convergent. We take its sum as the probability for A to be ruined

when nothing limits the number of games played. So it is clear that

this probability, although unknown, possesses a perfectly determined

numerical value. Let us denote by the probability for A to be ruined

when his fortune is x. The probability we seek is pa- Obviously,

(1) 2/0 = 1,

for A is certainly ruined if he has no money left. Similarly

(2) Va+b = 0

because if the fortune of A is a + &, it means that B has no money where-

with to play, and certainly the ruin of A is then impossible. Further,

considering the result of the game immediately following the situation

in which the fortune of A amounted to x it is possible to establish an
equation in finite differences which satisfies. For, if A wins this game
(the probability of which case is p), his fortune becomes x + 1 and the

probability of being ruined later is Pa:+i. By the theorem of compound
probability, the probability of this case is pVx^i^ But if A loses (the

probability of which is g), his fortune becomes x — I and the probability

that the one possessing this fortune will be ruined is The proba-

bility of this case is qpx-i- Now, applying the theorem of total proba-

bility, we arrive at the equation

(3) yoi py^j,x + qVx-i^

This equation has a particular solution of the form a® where a is a

root of the equation

a == pa^ + q.
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li p 7^ q there are two roots

and, correspondingly, there are two distinct particular solutions of

equation (3):

1 and
(l)

.

Obviously,

is also a solution of (3) for arbitrary C and D,

C and D so as to satisfy conditions (1) and (2),

equations

C + D = 1

^a+hQ
_[_

qa+bj) =

whence

Now, we can dispose of

To this end we have the

„ ^
a+b

rjO'+b
D = -

and
qa-hb/px pd+bqx

px(^qa+b _ pa+6^

It remains to take cc = a to obtain the required probability

^ g°(g^ - p'’) ^ g»(p& - q>>)

that the player A possessing the fortune a will be ruined. Similarly,

the probability of the ruin of B is

It turns out that

Zb
pa-\-h q^'^^

Va Zb — 1,

SO that the probability that the series of games will continue indefinitely

without A OT B being ruined, is 0. The probability 0 does not show the

impossibility of an eternal game, because this number was obtained,

not by direct enumeration of cases, but by passage to the limit. Theo-
retically, an eternal game is not excluded. Actually, of course, this

possibility can be disregarded.
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If p = g
= 1-'^^ SO that each single game is equitable, the preceding

solution must be modified. In this case, the above quadratic equation

in a has two coincident roots = 1,. and we have only one particular

solution of (3), = 1. But another particular solution in this case is

so that we can assume

Vx C + Dx

and determine C and D from the equations

C= 1; C + D(a + b) 0 ,

Thus, we find that

and for x = a

Similarly, giving Zb the same meaning as above,

a
Zb == —rT*a + b

If, therefore, each single game is equitable, the probabilities of ruin are

inversely proportional to the fortunes of the players. The practical

conclusion to be derived from this theoretical result is sheer common
sense: It is unwise to play indefinitely with an adversary whose fortune

is very large without submitting oneself to the great risk of losing all

one's money in the course of the games, even if each single game is

equitable. Gamblers who gamble at an even game with any willing

individual are in the same condition as if they were gambling with an

infinitely rich adversary. Their ruin in the long run is practically

certain.

If single games of the series are not equitable, that is, p 9^ q the

conclusion may be different. Supposing p > q, we have a case when
the expectation of A is positive; in each single game, A has an advantage

over his adversary. The above expression for ya may be written in the

form

and, because g/p < 1, it is easy to see that ya remains always less than

CL A’ b

Va
d b
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and converges to this number when 6 becomes infinite. Thus, playing a

series of advantageous games even against an infinitely rich adversary,

the probability of escaping ruin is

If a is large enough, this can be made as near 1 as we please, so that a

player with a large fortune has good reason to believe that in the course

of the games he will never be ruined, but that actually he is very likely

to win a large sum of money.

This conclusion again is confirmed by experience. Big gambling

institutions, like the Casino at Monte Carlo, always reserve certain

advantages to themselves, and, although they are willing to play with

practically everybody (as if they played against an infinitely rich adver-

sary) the chance of their being ruined is slight because of thejarge

capital in their possession.

3. In the problem solved above the stakes of both players were

supposed to be equal, and we took them as units to measure the fortunes

of both players. Next it wmiild be interesting to investigate the case in

which the stakes of A and B are unequal. An exact solution of this

modified problem, since it depends on a difference equation of higher

^ order, would be too complicated to be of practical use. It is therefore

extremely interesting that, following an ingenious method developed by
A. A. Markoff, one can establish simple inequalities for the required

probabilities which give a good approximation if the fortunes of the

players are large in comparison with their stakes.

Problem 2. If the conditions presupposed in Prob. 1 are modified,

in that the stakes of A and B measured in a convenient unit are a and

and their respective fortunes are a and 6, find the probabilities for A or

B to be ruined in the sense that at a certain stage the capital of A will

become less than a or that of B less than

Solution. Let yx be the probability for A to be forced out of the

game by the lack of sufficient money to set a full stake a when his

fortune amounts to x and consequently that of his adversary is a + 6 — x.

In the same way as before, w^e find that yx is a solution of the equation

• in 'finite difference's:

(4) yx = pyx-i-^ +

To determine yx completely, in addition to (4), we have two sets of

supplementary conditions

:

(5) ya = 2/1
== • • • = ya^i = 1

(0)
~

1
’

*
* — 1) 0 .
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Equation (5) expresses the fact that if the fortune of A becomes less

than his stake, it is certain that A must quit. On the contrary, equation

(6) indicates the impossibility for A to be ruined if the other player B
does not have enough money to continue gaming. Equation (4) is an

ordinary equation in finite differences of the order a + P. It has par-

ticular solutions of the form where ^ is a root of the equation

(7) - d^ + q = 0.

The left-hand member for ^ = 0 is positive and with increasing 6 de-

creases and attains a minimum when

and then steadily increases and assumes positive values for large 6.

This minimum must be negative or zero because ^ = 1 is a root of (7).

Now, if it is negative, there are two positive roots of (7). One of them
is ^ = 1 and another > or < 1 according as

or else

p <
a

a + or p >
a

T+J

p^ — qa < 0 or >0.

That is, the positive root of (7) different from 1 is > 1 when single games
are favorable to B and < 1 if they are favorable to ^4. In case of equita-

ble games, both positive roots coincide and ^ == 1 is a double root of (7).

All the other roots of (7) are negative or imaginary.

The regular way to solve the problem would be to write down the

general solution of (4) involving a + ^ arbitrary constants to be deter-

mined by conditions (5) and (6). As this method would lead to a com-
plicated expression for y^, we shall refrain from seeking the exact solution

of our problem, and instead, following A. A. Markoff^s ingenious remark,

we shall establish simple lower and upper limits for which are close

enough if the fortunes of the players are large in comparison with their

stakes.

Lemma. 1/ is a solution of equation (4) and none of the numbers

yo, 2/1, .. . 2/«~i

Va+h, pa+h—lj • . • ya+b—ff+l

is negative, then y^ ^ 0/or a; = 0, 1, 2, ... a + 6.

Proof. Let uf^ (& = 0, 1, 2, ... a — 1) represent the probability

that the player A whose actual fortune is x (and that of his adversary
a + b — x) will be forced to quit when his fortune becomes exactly = ft.

Evidently is a solution of equation (4) satisfying the conditions
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wf = 0 for a: = 0, 1, ... A: - 1, A; + 1, ... a - 1; a 4- 6,

a + b — 1, . . . a + b — p + 1; wf’ = 1.

Similarly, if = 0, 1, 2, . . . j(3 — 1) represents the probability that

the player B will be forced to quit when the fortune of A beconaes exactly

= a + 6 — Z, will be a solution of (4) satisfying the conditions

2
,a) = 0 for a; = 0, 1, 2, ... a — 1; a 4- Z>, ... a 4- 5 — Z + 1,

a + b- l-1, ...a + b- ^ + 1; = 1-

Thus we get a + /3 particular solutions of (4), and it is almost evident

that these solutions are independent. Moreover, since they represent

probabilities, S 0, n® ^ 0 for a: = 0, 1, 2, ... a + b. Now, any
solution ^ 3, of (4) with given values of

2/0, yi, . 2/<.-i

2/oz-|-6j ya-\-h— Ij ...

can be represented thus

a-l ^-1

Vx = + ]£2/a+6-ia“>.

&=0 2=0

Hence, ya- ^ 0 for a; = 0, 1, 2, . . . a + 6 if none of the numbers

2/0, 2/1; •• • 2/«-i

2/a-{-6, 2/®-H>— 1; * • * ya+h—P+l

is negative. This interesting property of the solutions of equation (4)

derived almost intuitively from, the consideration of probabilities can be

established directly. (See Prob. 9, page 160.)

The lemma just proved yields almost immediately the following

proposition: If for any two solutions t/' and y!J of equation (4) the

inequality

y'J ^ y'x

holds for

a: = 0, 1, 2, . . . a - 1; a + 6, a + 6 - 1, . . , a + b - ^ + 1,

the same inequality will be true for all x = 0, 1, 2, ... a + h. It

suffices to notice that yx = yx — 2/® is a solution of the linear equation

(4) and, by hypothesis, 2/a; ^ 0 for a: = 0, 1, 2, . . . a: — 1; a + 5,

d h — 1, . .. a“}“ & —
Now we can come back to our problem. First, if the mathematical

expectation of A
— qa



146 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. VIII

is different from. 0, equation (7) has two positive roots: 1 and B. With

arbitrary constants C and D

2/' - C + De-

is a solution of (4). Whatever C and D may be, as a function of x

varies monotonically. Therefore, if C and D are determined by the

conditions

Vo ~ 1? 2/a+&-/3+l
“ 0

we shall have

ylSl if a; = 0, 1, 2, ... a — 1

^'^0 if a? = a + &~/3 + l, ...a + 6

and by the above established lemma, taking into account conditions (5)

and (6), we shall have for the required probability the following inequality

Vx ^ yl;

or, substituting the explicit expression for yl,

Qa+b—^+l — 0x

yx ^ ^a+6-^+r __ I
*

If, on the contrary, C and D are determined by

2/a-l = 1, y'a-^b = 0

we shall have

and

2/^ ^ 1 if a: = 0, 1, 2, ... a — 1

2/'^0 if x = a + h — p+lj.,.a + b

Vx
<

0a+b—a+l 0x—ix+l

0a-i-b~~oc+X 2

Finally, taking a; = a, we obtain the following limits for the initial

probability ya:

Sb-fi+i _ I

^ 0a+b~^+l _ ^
^ ya S

- 1

0a+b-a+l __ I

They give a sufficient approximation to ya if a and h are large com-
pared with a and

If each single game is equitable, equation (4) has a solution with two
arbitrary constants:

+ Dx,

Proceeding in the same way as before, we obtain the inequalities

1 L___.
^ ~ + 1 a + b — a + 1
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4. To simplify the analysis, it was supposed that nothing limited the

number of games played by A and B so that an eternal game, although

extremely improbable, was theoretically possible. We now turn to

problems in which the number of games is limited.

Problem 3. Players A and B agree to play not more than n games.

The probabilities of winning a single game are p and g, respectively, and

the stakes are equal. Taking these stakes as monetary units, the fortune

of A is measured by the whole number a and that of B is infinite or at

least so large that he cannot be ruined in n games. What is the proba-

bility for A to be ruined in the course of n games?
Solution. Let yx,t represent the probability for A to be ruined when

his fortune is measured by the number x and he cannot play more than

t games. The reasoning we have used several times shows that yx,t

satisfies a partial equation in finite differences:

(8) ytc,t = 4- qyx-ht-i^

Moreover, if A has no money left, his ruin is certain, which gives the

condition

(9) yoj = 1 if ^ ^ 0.

On the other hand, if A still possesses money and cannot play any more,

his ruin is impossible, so that

(10) yx,o = 0 if X > 0.

Conditions (9) and (10) together with equation (8) determine yx,t

completely for all positive values of x and t. To find an explicit expres-

sion for yx,t we shall use Lagrange^s method. Equation (8) has particular

solutions of the form

where a and /S satisfy the relation

= pa^ + q-

We can solve this equation either for ^ or for a which leads to two different

expressions of yx,t^ Solving for we have infinitely many particular

solutions

a^{pa + qoT^y

with an arbitrary a and we can seek to obtain the required solution in the

form

= {pa + qa '^yf{a)da
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where f{<x) is supposed to be developable in Laurent^s series on a certain

circle c. To satisfy (10) we must have

a^~^f{a)da = 0 for x = 1, 2, 3, . . .

which shows that f(a) is regular within the circle c. To determine /(a)

completely, we must have, according to (9)

\
(pa + qa~^y^^^da =1 for ^ = 0, 1, 2, . . . .

AttIJc a

All these equations are equivalent to a single equation

1 r fjo^da _ 1

2TrijcOc — pea^ — qe 1 — e

holding good for all sufficiently small e. The integrand has a single pole

ao within c defined by

ao — peal 5'^ = 1^?

and the corresponding residue is

But this must be equal to

g + yoi-l

q - pa%

or, substituting for 6 its expression in ao

q + yal

pal — ao +
and hence for all sufficiently small ao

that is, if

/(«o) =
pal — ao + g'

/(«) = q
-

pa^ — a + g

all the requirements are satisfied. Taking into account that p + g
we have

/(«) = 1
,

pa
,

1 — a q — pa

1,

/(») -1 +2
n — l

and also
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The expression for yx.t is therefore

00

yx,t = + qaT'^y^^^CnOp'da

TO =0

where Co = 1 and Cn = 1 + if n ^ 1.

It remains to find the coefficient of l/a in the development of the

integrand in a series of descending powers of a. Since

t

a^-\Va + qa-^y =
1 = 0

this coefficient is given by the sum

t —X
2

1=0

extended over all integers I from 0 up to the greatest integer not exceeding
jjf — ^
—2— Hence, the final expression for the probability ya,n is

n — a

2

(11 ) ya.n =
1 = 0

with the agreement, in case of an even n — a, to replace the sum

po _|- qo

corresponding to I = —^— by 1- is natural that the right-hand

member of the preceding expression should be replaced by 0 if n < a,

which is in perfect agreement with the fact that A cannot be ruined in less

than a games.

The second form of solution is obtained if we express o: as a function of

The equation

'pa^ — a/? + g = 0

having two roots, we shall take for a the root

/3
— — 4:pq

^ "
2p

determined by the condition that it vanishes for infinitely large positive

id and can be developed in power series of 1/p when \p\ > 2'\/^. Using
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a in this perfectly determined sense, it is easy to verify that

y HO,

t

/3 - 1
dp

— 4pg\

~2p }

where c is a circle of radius > 1 described from 0 as its center, satisfies all

the requirements. For it is a solution of equation (8). Next, for x = 0

and ^ ^ 0,

and, finally, for i = 0 and a; > 0

+ w

y
p — —

4j9ffY dp

2p Jp-1
0

because the development of the integrand into power series of 1/P
starts at least with the second power of 1/p.

To find yx,t iu explicit form, it remains to find the coefficient of 1/jg

in the development of

( fi
- -iyqY

V 2p / ^ - 1

in a series of descending powers of p. Let

^/3 - ViS^ - 4pgV = k ^ h±L m . . . .

'* ^a;+l "t*
* •

*
,

2p

multiplying this series by

V

+ + 4- 1 q_ _1 q-.

P-I ^

we find that the coefficient of 1/

P

in the product is

Iz + Iz-^l + * *
* +

and hence

y x,t “ ^z T" •••-}-
2!^

provided t ^ x, for otherwise yx,t = 0. The quadratic equation in a
can be written in the form

« = + Poc^)

and the development of any power of its root vanishing for P = oo into

power series oil/p can be obtained by application of Lagrange's series.

We have
«o

.

^ nl L dr-' Jf-o'
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J^rdA-\q + {x + 2i- 1)! ^ ,

nl[ J^=,o i\{x + i)\
^ ^

a n — X + 2i, and = 0 if n = rc + 2z + 1. Hence,

I _ a:(a: + 2^ - 1)1

^a:4-2t4-l
~ 0,

and finally

(12) ;,... - ^•[l +> + +

4- . . . + + fc + 1)
• •

• (g + 2fc - 1) / Si:^ ^ 1 • 2 • • &

where h = —^— or A; = ^ according as n and a are of the

same parity or not.

5. The difference ya,n — ya,n-i gives the probability for the player A
to be ruined at exactly the nth game and not before. Now, this differ-

ence is 0 if n differs from a by an odd number, so that the probability of

ruin at the (a + — l)st game is 0. That is almost evident because

after every game the fortune of A is increased or diminished by 1 and

therefore can be reduced to 0 only if the number of games played is of

the same parity as a. If n == a + 2i, the difference ya,n — ya,n^i is

a{a + i + 1)
• •

• (<^ + — 1)

1 • 2 * 3 • •
• ^

^

Such, therefore, is the probability for A to be ruined at exactly the

(a + 2^)th game. The remarkable simplicity of this expression obtained

by means which are not quite elementary leads to a suspicion that it

might also be obtained in a simple way. And, indeed, there is a simple

way to arrive at this expression and thus to have a third, elementary,

solution of Prob. 3.

Considering the possible results of a series of a + 2i games, let A
stand for a game won by A, and B for a game lost by A. The result of

every series will thus be represented by a succession of letters A. and B

,

We are interested in finding all the sequences which ruin A at exactly

the last game. Because the fortune of A sinks from a to 0 there must be

i letters A and ^ + a letters B in every sequence we consider. Besides,

there is another important condition. Let us imagine that the sequence

is divided into two arbitrary parts, one containing the first letter and
another the last letter of the sequence. Let x be the number of letters J5,
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and y that of letters A in the second or right part of the sequence. There

will be a + i — X letters B and i — y letters A in the first or left part.

It means that the fortune of A after a game corresponding to the last

letter in the left part, becomes

and since A cannot be ruined before the (a + 20th game, x must always

be >y. That is, counting letters A and B from the right end of the

sequence, the number of letters B must surpass the number of letters A
at every stage. Conversely, if this condition is satisfied the succession

represents a series of games resulting in the ruin of A at the end of the

series and not before.

To find directly the number of sequences satisfying this requirement

is not so easy, and it is much easier, following an ingenious method

proposed by D. Andrd, to find the number of all the remaining sequences

of i letters A and t + a letters B. These can be divided into two classes

:

those ending with A and those ending with B. Now, it is easy to show

that there exists a one-to-one correspondence between successions of these

two classes, so that both classes contain the same number of sequences.

For, in a sequence of the second class (ending with B) starting from

the right end, we necessarily find a shortest group of letters containing

A and B in equal numbers. This group must end with A. Writing

letters of this group in reverse order without changing the preceding

letters, we obtain a sequence of the first class ending with A. Con-

versely, in a sequence of the first class there is a shortest group at the

right end ending with B and containing an equal number of letters A and

B. Writing letters of this group in reverse order, we obtain a sequence

of the second class.

An example will illustrate the described manner of establishing the

one-to-one correspondence between sequences of the first and of the

second class. Consider a sequence of the first kind

B\BBABAA,

The vertical bar separates the shortest group from the right containing

letters A and B in equal numbers. Reversing the order of letters in this

group, we obtain a sequence of the second class

B\AABABB

and this sequence, by application of the above rule, is transformed again

into the original sequence of the first class. The number of sequences

of the first class can now be easily found. It is the same as the number of

all possible sequences of i — 1 letters A and a + i letters B, that is,

(a 4- 2i — 1)
! _ (a -f- i + l)(<x -f- i + 2)

* *
* (a -1- 2^ — 1)

(i- l)!(a + t)! 1-2 — • a - 1)
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The total number of sequences in both classes is

^(a + i + 1) {a + i + 2) •
•

• (a + 2i — 1)

1 • 2 • •
• (t - 1)

Hence, the number of sequences leading to ruin of A in exactly a + 2i

games is

((X 4“ 4“ 1)(^ “jJ "4" 2)
* •

• (n -f" 2i)

1 • 2 • •
• X

_ o(^ + X + l)(a + i + 2)
• *

* (a 4" 2x — 1) __

1 • 2 • •
• (x - 1)

ci((x 4“ ^ 4" 1)
*

* (<x 4" 2x — 1)
_

j . 2 . . . i

As the probability of gains and losses indicated by every such sequence

is the same, namely, the probability of the ruin of A in exactly

a 4* 2i games is

aja + i + 1) (a + 2i - 1) ^ ^

1 2 • 3 • • • i
® ^

and hence the second expression found for ya,n follows immediately.

The problem concerning the probability of ruin in the course of a

prescribed number of games for a player playing against an infinitely

rich adversary was first considered by de Moivre, who gave both the

preceding solutions without proof; it was later solved completely by
Lagrange and Laplace. The elementary treatment can be found in

Bertrand^s '^Calcul des probabilites.’^

6. Formulas (11) and (12), though elegant and useful when n is not

large, become impracticable when n is somewhat large, and that is pre-

cisely the most interesting case. Since the question of the risk of ruin

incurred in playing equitable games possesses special interest, it would not

be out of place at least to indicate here, though without proof, a con-

venient approximate expression for the probability 2/0 ,n in case of a large

n and p = ^ = 3^. Let t be defined by

vwny
then for n ^ 50 it is possible to establish the approximate formula

ya,n
2 n

VttJo
+

fin

where —1 < ^ < 1. Suppose, for instance, that the fortune of a player

amounts to $100, each stake being $1, and he decides to play 1,000^
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5.000, 10,000, 100,000, 1,000,000 games. Corresponding to these eases,

we find

t = 2.2354, 0.9999, 0.7071, 0.2236, 0.0707

and hence

Ce-^^dz = 0.9984, 0.8427, 0.6827, 0.2482, 0.0796.
VTrJo

The corresponding approximate values of 2/ 100 ,n are

0.0016, 0.1573, 0.3173, 0.7518, 0.9204.

Thus, for a player possessing $100 there is very little risk of being ruined

in the course of 1,000 games even if he stakes $1 at each game. The risk

is considerably larger, but still fairly small, when 5,000 games are played.

In 10,000 games we can bet 2 to 1 that the player will still be able to

continue. But when the limit set for the number of games becomes

100.000, we can bet 3 to 1 that the player will be ruined somewhere in the

course of those 100,000 games. Finally, there is little chance to escape

ruin in a series of 1,000,000 games. The risk of ruin naturally increases

with the number of games, but not so fast as might appear at first sight.

7. We conclude this chapter by solving the following problem,

where the fortunes of both players are finite.

Problem 4. Players A and B agree to play not more than n games,

the probabilities of winning a single game being p and g, respectively.

Assuming that the fortunes of A and B amount to a and h single stakes

which are equal for both, find the probability for A to be ruined in the

course of n games.

Solution. Let Zx,t be the probability for the player A to be ruined

when his fortune is x (and that of his adversary a + 6 — a;) and he can
play only t games. Evidently Zx,t satisfies the equation

(13) Zx,t = pzx+u-^i + qzx~.i,t-i

perfectly sindlar to equation (8), but the complementary conditions

serving to determine Zx,t completely are different. First we have

(14) Zo,t = 1 for ^ ^ 0.

Next,

(15) = 0 for ^ ^ 0,

because if A gets all the money from B, the games stop and A cannot be
ruined. Finally,

(16) ^.,0 = 0 for a; - 1,2,3, . . . a + b - 1.
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because A, having money left at the end of play, naturally cannot be

ruined.

Since (13) has two series of particular solutions

and a'^13^

where a and a' are roots of the equation

pa^ — jSa + g = 0

both developable into series of descending powers of /3 for |/3| > 1, we
shall seek z^,t in the form

Here the integration is made along a circle of auflS.ciently large radius and

f(d) and (p{S) are two unknown functions which can be developed into

series of descending powers of p. Obviously Za:,t satisfies (13) identically

in X and t. For a; = 0 and t 0 we have the condition

+ ‘Pmm = i; ^ = o, i, 2, . .

.

which is satisfied if

(17) m +m
Condition (15) will be satisfied if

(18) a"+y(0) + = 0

and it remains to show that at the same time (16) is satisfied. Solving

(17) and (18), we have

O^fa+b
3^

= a'o+i - a^+b

— 1

a'a+i. _
and

(19)

a'a+bQtX _ oja+fta's:

(|8 - l)(a'“+'' - «“+*)

^'a+b—x

(^ - l)(a:'«+^ -

Now let a be the root vanishing for /3 = 00 and a' the other root whose

development in series of descending powers of starts with the term

containing 0. Evidently the development of (19) for

a; = 1, 2, 3, . . . a + f>
-- 1
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does not contain terms involving the first power of l/j^, and hence

= 0 if o: = 1, 2, 3, . . . a + 6 — 1 as it should be. The solution

of (13) satisfying (14), (15), (16) being unique, its analytical expression is

therefore

t

/a+b—a ^a-hb-^cn

-^S+F-
l3‘d^

0 - f

whence for a; = o and t = n

^a,n
^ — r

To find an explicit expression for Za,n it remains to find the coefficient of

1//? in the development of

AY
\p

)

~ /5 -- 1

in series of descending powers of /5. This can be done in two different

ways. First we can substitute for a' its expression in a:

oc = —a ^

V

and present P in the form

a+b
y2a+2b

0”

/3- 1’
P = —

1 -

or developing into series

P = q:“+2‘ + ^
a3»+2» _ ^2^

"^^^0,30+45

But the coefficient of l/jS in

1

P - 1

by the second solution of Prob. 3 is the probability ym,n for a player with
a fortune m to be ruined by an infinitely rich player in the course of n
games. Hence, the final expression for Za,n is

^a,n — ya,n
q/ + \l

0+6

2/30+26 , n

0+26

2/30+46,n +
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the terms of this series being alternately of the form

ka+kh

y(2A;+1) a4-2ifc6, n

and
Aa+(&+!)&

^(2A;+l)a+(2/i:+2)6,n

for fc = 0, 1, 2, . . . . The series stops by itself as soon as the first

subscript of yx,n becomes greater than n.

To obtain a second expression of Za,n we notice that

Q,' ^ a' — a

is a rational function of ^ whose denominator

R =

= Q ^ B

is a polynomial in jS of the degree a + h — 1. To find the roots of JS = 0,

we set P = 2\/^ cos cp. Since, then,

we have

The equation

having roots

_ f g\
°'^

9:

~
'^sin (a + b)(p

R
sin <p

sin (a + h)<p = 0

hir
<Ph

sin (p

h = Ij 2j ... a + h — Ij
a + y

the a + 6 — 1 roots of R are

Pk = 2v^ cos (ph.

Now we can resolve the rational function P into a sum of simple elements

as follows;

P = E(^) +

o-}-& — 1

Ah

A = 1

A = - g’’)

® <pa+b qa-\-h

where
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and for h > 0

A, -
^ coa ^.)

while E{I3) is the integral part of P. The coefBcient of 1/^ in the develop-

ment of P being

a+6-l

Ao + Ajii

we have a new explicit expression for Za,n-

(20 ) /p(i'\‘h ^a+6

aa+ h—1

(2V^)"+Hgp~^)^ _
a + b -

A-i 1

sin
irh

<2 “h ?>

2Vm cos
Tth

a + h

sin
Tah

u b
cos

Tvh Y
a + 6/

This expression shows clearly that Za,n, with increasing n, approaches

the limit

qa^ph _ qb\

representing the probability of ruin when the number of games is unlim-

ited, in complete accord with the solution of Prob. 1.

The first term in (20) naturally must be replaced by — in case
a -T 0

P — == M* This form of solution was given first by Lagrange.

Problems for Solution

1. Players A and B with fortunes of 150 and $100, respectively, agree to play until

one of them is ruined. The probabilities of winning a single game are % and
respectively, for A and B, and they stake $1 at each game. What is the probability

of ruin for the player A? Ans, Very nearly 2"^^ ~ 8.88-10”^®.

2. If A and B at each single game stake $3 and $2, respectively, and have fortunes

of $30 and $20 at the beginning, what is the approximate value of the probability

that JL will be ruined if the probability of his winning a single game is (a) p — %]

Ans. (a) 0.40 + A; |a| < 1.7 X lO"®; (6) 0.96 + A; [Al < 4.6 X lO-^.

3. A player A with the fortune $a plays an unlimited number of games against an
infinitely rich adversary with the probability p of winning a single game. He stakes

$1 at each game, while his rich adversary risks staking such a sum jS as to make the
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game favorable to A. What is the probability that A will be ruined in the course

of the games? Give numerical results if (a) a = 10, 2? = /? = 3,* (b) a = 100,

P = Mj A'tis. Let ^ < 1 be a positive root of the equation •— 0 + $ •= 0.

The required probability P is : P =
In case (a) P = 0.002257; in case (5) P = 3.43 * IO-^t.

4. A player A whose fortune is $10 agrees to play not more than 20 games against

an infinitely rich adversary, both staking $1 with an equal probability of winning a

single game. What is the probability that A will not be ruined in the course of

20 games? Ans. 0.9734.

5. Players A and B with $1 and $2, respectively, agree to play not more than n
equitable games, staking $1 at each game. What are the probabilities of their ruin?

Ans. For A: -
3 + (-1^ 1 _ 3 -- (-1)^

3 .
2«+i ^ *3 3 .

2^"^^

6. Players A and B with $2 and S3, respectively, play a series of equitable games,

both staking $1 at each game. What are the probabilities of their ruin in n games?

Give the numerical result if n = 20. Ans.

For A:

For B:

5 5lV 4 y

2 ^//Vs+iV
nv 7

6 = 1 if n is odd, € == 2 if n is even.

17
— 1 if n is even, 1 = 2 if n is odd.

7. Find the expression of ?/a.n, the probability of the ruin of A when his adversary

B is infinitely rich, corresponding to formula (20). Ans. From the definition of a

definite integral it follows that

2/0 ,« — ya-fi f-Jo 1 -
sm <p sin a<p

2Vm cos (p

-(cos (p)^d<p

where

ya,„ = 1 if P £ y

2/0.00 = I
-

\p
if V > g.’

If the games are equitable and n differs from a by an even number, then

ya,n

T
2 P2 fill o,<P

tJo sin <p

(cos <p) ^^dip.

This formula was given by Laplace.

8. Referring to the last formula in the preceding problem, show that

2/a,n = 1 - -b A

t

a

\/2(n + I)

|A|
1

.

2
< v h -e

27rn n
32 .

where
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Indication of the Proof. It is important to prove the following inequalities first

whence

<p (cos
W'f'l

sin ^

^(cos

< e for 0 < ^ ^

sin <p

> e

<p (cos

sin <p

n+l

n+ §

(n+l)y*
8 for

-f- 1

0 < ^

0 < ^ < 1

provided 0 < ^ ^ 7r/4. The rest of the proof is easy.

9. Attempt a direct proof of the important lemma (page 144) used in the discus-

sion of Prob. 2.

Hint: The proof can be based upon the following proposition^ generalizing an

important theorem on determinants due to Minkowski: Let

fi = aiiXi + a2iX2 4- • . ‘ -h aniXn; i == 1, 2, 3, . . , n

be a system of linear forms whose coefficients satisfy the following conditions:

(1) an > 0; aki ^ 0 if k i; aii -h a2i + • •
• + cird ^ 0.

(2) One of these sums is positive.

If these forms assume nonnegative values, then every rci ^ 0(f = 1, 2, ,. . . w).

Proof by induction: Express Xn through xi, xa, . . . Xn-i, thus:

Xn
fn CllnXi a^nXi

ann

— an^l,nXn—l

and substitute into the remaining forms. Show that the resulting forms in 0: 1 , Xz^

. . . ;Cn-i satisfy the same conditions (1) and (2). Hence, it remains to prove the

proposition for two forms, which can easily be done.
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CHAPTER IX

MATHEMATICAL EXPECTATION

1. Bernoulli's theorem, important though it is, is but the first link

in a chain of theorems of the same character, all contained in an extremely

general proposition with which we shall deal in the next chapter. But
before proceeding to this task, it is necessary to extend the definition of

“mathematical expectation^’—an important concept originating in

connection with games of chance.

If, according to the conditions of the game, the player can win a

sum a with probability p, and lose a sum h with probability ^ = 1 — p,

the mathematical expectation of his gain is by definition

pa — qb.

Considering the loss as a negative gain, we may say that the gain of the

player may have only two values, a and —6, with the corresponding

probabilities p and g, so that the expectation of his gain is the sum of the

products of two possible values of the gain by their probabilities. In this

case, the gain appears as a variable quantity possessing two values.

Variable quantities with a definite range of values each one of which,

depending on chance, can be attained with a definite probability, are

called “chance variables,” or, using a Greek term, “stochastic” variables.

They play an important part in the theory of probability. A stochastic

variable is defined (a) if the set of its possible values is give% and (6) if

the probability to attain each particular value is also given.

It is easy to give examples of stochastic variables. The gain in a

game of chance is a stochastic variable with two values. The number of

points on a die that is tossed, is a stochastic variable with six values,

1, 2, . . . 6, each of which has the same probability A number on

a ticket drawn from an urn containing 20 tickets numbered from 1 to 20,

is a stochastic variable with 20 values, and the probability to attain

any one of them is Each of two urns contains 2 white and 2 black

balls. Simultaneously, one ball is transferred from the first urn into the

second, while one ball from the latter is transferred into the first. After

this exchange, the number of white balls in one of the urnsmay be regarded

as a stochastic variable with three values, 1, 2, 3, whose corresponding

probabilities are, respectively, It is natural to extend the

concept of mathematical expectation to stochastic variables in general. -

161
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Suppose that a stochastic variable x possesses n values:

^1) ^ 2 )
• • • ^nj

and

Pl, P2, . . . pn

denote the respective probabilities for x to assume values Xi, X2,
. . . x«.

By definition the mathematical expectation of x is

JE(x) = PiXi + P2X2 + • •
• + PnXn-

^t is understood in this definition that the possible values of the

variable x are numerically different. For instance, if the variable is a

number of points on a die, its numerically different values are 1, 2, 3, 4, 5,

6, each having the same probability, By definition, the mathematical

expectation of the number of points on a die is

, K1 + 2 + 3 + 4 + 5 + 6) = 3.5.

j If the variable is the number on a ticket drawn from an urn containing

20 tickets numbered from 1 to 20, its numerically different values are

represented by numbers from 1 to 20, and the probability of each of

these values is so that the mathematical expectation of the number
on a ticket is

5^(1 + 2+ • *
• + 20) = 10'.5.

2. It is obvious that the computation of mathematical expectation

requires only the knowledge of the numerically different values of the

variables with their respective probabilities. But in some cases this

computation is greatly simplified by extending the definition of mathe-
matical expectation. Suppose that, corresponding to mutually exclusive

and exhaustive cases ^ 1 ,
+ 2 ?

• • • the variable x assumes the values

Xi, X2,
. . . Xmj with the corresponding probabilities pi, p 2 ,

• . • Pm)
we can define the mathematical expectation of x by

E{x) = PiXi + P2X2 + •
* + PmX^.

What distinguishes this extended definition from the original one is that

in the second definition the values xi, X2 ,
. . . x„i need not be numerically

different; the only condition is that they are determined by mutually
exclusive and exhaustive cases.

+ To make this distinction clear, suppose that the variable x is the

number of points on two dice. Numerically different values of this

variable are

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

and their respective probabilities

A? A-
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Therefore, by original definition, the expectation of x is

A + A + if + M + M + if + if + If + If + If + If =W = 7.

But we can distinguish 36 exhaustive and mutually exclusive cases accord-

ing to the number of points on each die and, correspondingly, 36 values

of the variable rr, as shown in the following table:

First die Second die X First die Second die X

1 1 2 4 1 5

1 2 3 4 2 6

1 3 4 4 3 7

1 4 5 4 4 8

1 5 6 4 5 9

1 6 7 4 6 10

2 1 3 5 1 6

2 2 4 5 2 7

2 3
‘

5 5 i 3 8 .

2 4 6 5 4 9

2 5 7 5 5 10

2 . 6 8 5 6 11

3 1 4 6 1 7

3 2 5 6 2 8

3 3 6 6 3 9

3 4 7 6 4 10

3 5 8 6 5 11

3 i 6 9 6 6 12

The probability of each of these 36 cases being Hg, by the extended

definition the mathematical expectation of x is

2 + 2*3 + 4*3 + 5*4 + 6-5 + 7*6 + 8-5 + 9'44-10-3 + ll-2+12
36

= 7

as it should be.

It is important to show that both definitions always give the same
value for the mathematical expectation.

Let Xiy X2 j
. . . Xm be the values of the variable x corresponding

to mutually exclusive and exhaustive cases Ai, A 2 ,
. . . 'and,

Ph Vh • • • their respective probabilities.* By the extended defini-

tion of mathematical expectation,, we have

(1 ) E{X) = p$Xt + P2X2 + ' •
* + PmXm-
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The values Xi, X2, . . . x^ are not necessarily numerically different,

the numerically different values being

r, . . . X.

We can suppose that the notation is chosen in such a way that

Xi, X2f , . . Xa are equal to

Xa+h • . • Xh are equal to t?;

Xs+i, XhJr2j . > . Xc are equal to f ;

^ ‘ Xm are equal to X.

Hence, the right-hand member of (1) can be represented thus:

(Pl + P2 + * •
* +Va)i + {Pa^l + pa+2 +*••-[- + * *

* +
+ (pz+1 “h Vw -[t * ‘

‘ + Pw)X.

But by the theorem of total probabilities, the sum

Pi + P2 + * *
• + Pa

represents the probability P for the variable x to assume a determined

value ?, because this can happen in a mutually exclusive ways; namely,

when X — Xi^ ov X ^ X2j , . . or a: = x^. By a similar argument we see

that the sums

Pa+l + Pa+2 + '
‘ + P6

P64-1 + P6+2 + * *
' + Pc

pl^l + -b • •
' + Pm

represent the probabilities Q, . . . T for the variable x to assume
values 77, ... X. Therefore, the right-hand member of (1) reduces

to the sum

+ Qy) ^ Rt + ' - + T\ .

which, by the original definition, is the mathematical expectation of x.

If, corresponding to mutually exclusive and exhaustive cases, a

variable x assumes the same value a—^in other words, remains constant

—

it is almost evident that its mathematical expectation is a, because the

sum of the probabilities of mutually exclusive and exhaustive cases is 1.

It is also evident that the expectation of ax where a is a constant, is

equal to a times the expectation of a;.

Note; Very often the matheinatical expectation of a stochastic variable is called

its ‘'mean value.”

Mathematical Expectation op a Sum

3. In many cases the computation of mathematical expectation is

greatly facilitated by means of the following very general theorem:
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Theorem. The mathematical expectation of the sum of several variables

is equal to the sum of their expectations; or^ in symbols,

E(x + ‘ +^)= E{x) + E{y) + E{z) E{w).

Proof. We shall prove this theorem first in the case of a sum of two
variables. Let x assume numerically different values Xi, X 2 ,

. r. Xm,

while numerically different values of y are yi, y^, . . . Vn- In regard to

the sum x + y we can distinguish mn mutually exclusive cases; namely,

when X assumes a definite value Xi and y another defiinite value yj, while i

and j range respectively over numbers 1, 2, 3, . . . wandl, 2, 3, . . . n.

If Pa denotes the probability of coexistence of the equalities

2/ ==
2/?

we have by the extended definition of mathematical expectation

m n

E{x + y) = ^ '^Puixi + yi),

(2) E{x 4- 2/) = 22 VijXi + .X?
t = iy=i -i=iy=i

As the variable x assumes a definite value Xi in n mutually exclusive

ways (namely, when the value Xi of x is accompanied by the values

Viy 2/2 ,
• 2/n of y) it is obvious that the sum

n

Xvii
y=i

represents the probability pi of the equality x - Xi, In a similar manner
we see that the sum

m

i==l

represents the probability gy of the equality y = t/y. Therefore
m n m n m

2/
= E{x),

i s= 1 y = 1 i ss 1 y = 1 i= i

m n n m n

2)
XPaVi =

'X XviiVi = = E{y);

i*siy=i y=iz = i y=i

and sinGularly
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that is, by (2)

E(x + y) = E{x) + E{y)

which proves the theorem for the sum of two variables.

If we deal with the sum of three variables a; + j/ + s, we may consider

it at first as the sum oi x y and z and, applying the foregoing result,

we get

E{x + 2/ -f- 2) = E{x + y) + E{z)]

and again, by substituting (re) + E{y) for E{x + y),
*

E{x + y z) = E(x) + E{y) + E{z).

In a similar way w^e may proceed farther and prove the theorem for the

sum of any number of variables.

4. The theorem concerning mathematical expectation of sums,

simple though it is, is of fundamental importance on account of its very

general nature and will be used frequently. At present, we shall use it

in the solution of a few selected problems.

Problem 1. What is the mathematical expectation of the sum of

points on n dice?

Solution. Denoting by Xi the number of points on the ^'th die, the

sum of the points on n dice will be

s = q- q- • •
• Xn,

and by the preceding theorem

E{s) = E(x{) + E(x2) + • •
* + E{xn).

But for every single die

E(xi) = f = 1, 2, . . . n;

therefore

Problem 2. What is the mathematical expectation of the number of

successes in n trials with constant probability j??

Solution. Suppose that we attach to every trial a variable which
has the value 1 in case of a success and the value 0 in case of failure. If

the variables attached to trials 1, 2, 3, . . . n are denoted by 0:2 ,
. . .

OTn, their sum

m = Xi-\- + ^ Xn

obviously gives the number of successes in n trials. Therefore, the
required expectation is

E{m) == E{x-^ + E{x^ _j_ . .
. ]E(^Xn).
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But for every i = 1, 2, 3, . . . n

= p • 1 + (1 ~ p) ‘ 0 == p,

because Xi may have values 1 and 0 with the probabilities p and 1 — p
which are the same as the probabilities of a success or a failure in the rth

trial. Hence,

E{m) — np
or

E(m — np) = 0,

which may also be written in the form

^ Tm{m — np) = 0.

m~0

This result was obtained on page 116 in a totally different and more
complicated way. The new deduction is preferable in that it is more
elementary and can easily be extended to more complicated cases, as

we shall see in the next problem.

Problem 3. Suppose that we have a series of n trials independent or

not, the probability of an event being pi in the ^^th trial when nothing is

known about the results of other trials. What is the mathematical

expectation of the number of successes m in n trials?

Solution. Again let us introduce the variable Xi connected with

the “fth trial in such a way that Xi = 1 when the trial results in a success

and Xi = 0 when it results in failure. Obviously,

m = Xi + X2 + *
'

* + Xn

and

E(m) = E(xi) + E{x2) + • •
• + E(xn)-

But

E(xi) = 1 • Pi + 0 • (1 - Pi) = Pi

and therefore

E{m) = Pi + P2 + ' •
* + Pt^.

For instance, if we have 5 urns containing 1 white, 9 black; 2 white,

8 black; 3 white, 7 black; 4 white, 6 black; 5 white, 5 black balls, and we
draw one ball out of every urn, the mathematical expectation of the

number of white balls taken will be:

F?(m) = * + ^ + A + A + ^
Problem 4. An urn contains a white and h black balls, and c balls are

drawn. What is the mathematical expectation of the number of the

white balls drawn?
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Solution. To every ball taken we attach a variable which has the

value 1 if the extracted ball is white, and the value 0 otherwise. The

number of white balls drawn will then be

s = a^i + rc2 + ‘ *
* +

But the probability that the ^th ball removed will be white when nothing

is known of the other balls is — therefore
“T V

E{x,) =
a + &

• 1 + 0 =
a + 6

for every i, and the required expectation is

E{s) = ca

a -H 5

Problem 6. An urn contains n tickets numbered from 1 to n, and

m tickets are drawn at a time. What is the mathematical expectation

of the sum of numbers on the tickets drawn?

Solution. Suppose that m tickets drawn from the urn are disposed

in a certain order, and a variable is attached to every ticket expressing

its number. Denoting the variable attached to the ith ticket by Xi^

the sum of the numbers on all m tickets apparently is

5 = Xi + 3^2 + * •
* + Xm-

But when taken singly, the variable Xi may represent any of the numbers

1, 2, 3, . . . n, the probability of its being equal to any one of these

numbers being 1/n. By the definition of mathematical expectation, we
have

n + 1

2
'

For example, taking the French lottery where n = 90 and m == 5, we
find for the mathematical expectation of the sum of numbers on all 5

tickets

Ei-s) = 227.5.

Problem 6. An urn contains n tickets numbered from 1 to n. These
tickets are drawn one by one, sp that a certain number appears in the

first place, another number in the second place, and so on. We shall say

E(xi) = 1 + 2 + 3 + + n
n

and therefore

E(s) = m(n + 1)
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that there is a coincidence^^ when the number on a ticket corresponds

to the place it occupies. For instance, there is a coincidence when the

first ticket has number 1 or the second ticket has number 2, etc. Find

the mathematical expectation of the number of coincidences. Also, find

the probability that there will be none, or one, or two, etc., coincidences.

Solution. Let Xi denote a variable which has the value 1 if there is

coincidence in the rth place, otherwise Xi = 0. The sum

s = + • *
' +

gives the total number of coincidences and

E(s) — E(xi) + E{x^ E{xn)-

But

because the probability of drawing a ticket with the number i in the itli

place without any regard to other tickets obviously is 1/n; therefore,

Eis) = n • - = 1.
n

On the other hand, denoting the probability of exactly i coincidences by

Pi, we have by definition

= Pi + 2p2 + ' '
* + npnj

and, comparing with the preceding result, we obtain

(3) pi + 2p2 4- ' ’
‘ + npn = 1.

Let us denote by <p{n) the probability that in drawing n tickets, we shall

have no coincidences. It is easy to express pi by means of (p{n — i).

In fact, we have exactly i coincidences in

_ n{n - 1)
• *

• (n - i + 1)

^ 1 • 2 • 3 • • * ^

mutually exclusive cases; namely, when the tickets of one of the

specified groups of i tickets have numbers corresponding to their places

while the remaining n — i tickets do not present coincidences at all.

By the theorem of compound probability, the probability of i coincidences

in i specified places is

1
^

1
. , ,

1

n n — 1 n — i + 1
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and the probability of the absence of coincidences in the remaining n — i

places is (pin — i). The probability of exactly i coincidences in i specified

places is therefore

(pin — i)

nin —
' 1)

• •
* (n — i + 1)^

and the total probability pi of exactly i coincidences without specification

of places is

__ njn — 1)
• •

• (n — ^ + 1)
,

<^(?^ ~ i)

1 • 2 • 3 • ’ * ^ n{n — 1)
• •

• (n — ^ + 1)^

or

(4) Vi
(pin — i)

1 • 2 • 3 • •

The symbol ^(0) has no meaning, but the preceding formula holds

good even for i = n if we assume ^(0) = 1.

Substituting expression (4) for pi into (3), we reach the relation

_ 1 ) + + + «:(0)

1)!
= 1

;

or changing n into n + 1

<p{n) + <p{n

1 !

1)
I

y(n-2)
^

2!

which gives successively ^(2), ^(3), ... by taking

n = 1, 2, 3, . . . .

The general result, which can easily be verified, is

=2 (-1)*

h\
&=0

or, in an explicit form,

(pin)
i_i + j_

1
^ 1-2 +

1 •2-3

Even for moderate n this is very near to

1

+ (- 1)”

1-2-3

1 = 1 — 1
-i

—

n
e 1^1-2

n

+ ad inf. = 0.36787944.1-2-3

Mathematical Expectation of a Product

6. For the product of two or more stochastic variables we do not

possess anything so general as the foregoing theorem concerning the
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mathematical expectation of sums. An analogous theorem with respect

to the product of stochastic variables can be established only under
certain restrictive conditions.

Several stochastic variables are called 'independent^ ^ if the proba-

bility for any one of them to assume a determined value does not depend
on the values assumed by the remaining variables. For instance, if the

variables are the numbers of points on dice, they may be considered as

independent.

On the other hand, w^e have a case of dependent variables in numbers
on tickets drawn in a lottery. For, in this case the fact that certain

tickets have determined numbers precludes the possibility of any one of

these numbers appearing on other tickets drawn at the same time.

If more than two variables are independent according to the above

definition, it is clear that any two of them are independent. But the

converse is not true: It is easy to imagine cases when any two of the

variables are independent and yet they are not independent when taken

in their totality. Therefore, when speaking of independence of variables,

we must alw^ays specify whether they are independent in their totality

or only in pairs.

For two independent variables we have the following simple theorem:

Theorem. The mathematical expectation of the product xy of two

independent variahles x and y is equal to the product of their expectations;

or, in symbols

E(xy) = E{x)E{y).

Proof. Let xi^ X2, ... Xm he the complete set of values for x, and

Vh y% • • ‘ Vn the analogous set for y. Denoting the probability of

X being equal to Xi by pi, and similarly, the probability of y being equal

to yj by g/, the events

X = Xi and y = yj

are independent by definition of independence—because the probability

of X being equal to Xi is not affected by the fact that y has assumed any

one of its possible values, and it remains pi.

By the theorem of compound probability the simultaneous occurrence

of the events

X ^ Xi and y = yj

has the probability pig/. Again, by the extended definition of mathe-

matical expectation

m n

Eixy) = '^‘PiqiXiyj
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because the values of the product xy are determined by mn exhaustive

and mutually exclusive cases

a; = y = Vi

i = 1, 2, . . . m; j = 1, 2, . . . n.

Now, performing the summation with respect to j first, while i remains

constant, we have

n n

'^PiqiXiUi = PiXi = piXiE(y),

and again

m m

E(xy) = '^piXiEiy) = E(y)'^piXi,

i=l 1=1

or

E{xy) = E{x)E{y),

This theorem can be extended to the case of several factors inde-

'pendent in their totality. For instance, if x, y, z are independent, it is

obvious that xy and z are also independent. Hence

E{xyz) = E{xy)E(z),

and again

E(xyz) = E{x)E{y)E{z).

In a similar way we can extend this theorem to any number of inde-

pendent factors.

As an important application, let us consider two independent variables

rr and y with the respective expectations a and h. The variables x — a

and 2/
— & being independent also, we have

but

therefore

(5 )

E(x — a){y — h) = E{x — a)E{y — 6);

E{x ~ a) = E{x) — a = a — a = 0;

E{x — a){y — 6) = 0.

Dispersion and Standard Deviation

6. Let X be a variable and a its mathematical expectation. The
expectation of

(x — ay

is called ^^dispersion^^ of the variable, and the square root of dispersion

is usually called standard deviation.^’ As

(x — ay _ 2ax +
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we can apply the theorem on the expectation of sums to the right-hand

member of this identity and find

E{x — ay = E{x‘^) — 2aE(x) + = E{x^) —

or, denoting by b the expectation of x^y

(6) Eix - ay = h - a\

Thus, the computation of dispersion can be reduced to the computa-

tion of the expectation of the variable itself and its square. Also, denot-

ing by (T the standard deviation of x, we have the formula

cr^ = b — a^.

For instance, if the variable is the number of points on a die, we have

b = V + 2^ +
6

+ 62 ^ 91

6

and

<;.2 = ^ = 2.917; (T = 1.708.

Dispeesion of Sums

7 . It is important to have a convenient formula to find the dispersion

of a sum

s = + ^2 + • * ' Xn

of several stochastic variables. The expectation of 5 is given by

E{s) = E{xi) + E{x2) -}-•••+ E{Xn)

or

E{s) = ai -f a2 + • •
* + an,

denoting by ai the expectation of Xi. The deviation of s from its expecta-

tion is, therefore,

Xi + X2+ * •
• + Xn — (ai + a2 + * •

* + Un),

and we have to find the expectation of

{Xi + X2+ • • ^
-f- iCn — ai — a2 - • • • ““ a^y.

Now we. have identically

n

{Xi + X2 + ‘ ^
‘ + Xn — ai — ‘ — any = ^{xi - ai)^ +

i=i

”f" 2^1^ — a^(Xj a,),

ij
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the last sum being extended over all the different combinations of sub-

scripts i and j for which i 9^ j and consisting of n(n — l)/2 terms.

The mathematical expectation of a sum being equal to the sum of the

expectations of its terms, we must find the expectations of the terms

(xi — aiy and (xi — a^{xj — a/).

The first is the dispersion of Xi and can be found from (6) ;
namely,

E{xi — a^y = bi — af = af

if bi is the expectation of xf.

As to

E(xi — ai){xj - aj),

instead of it we introduce the so-called ^^correlation coefficient'^ of Xi

and Xf

„ E(xi — ai)(xj — a^)
xCi^j — *

O'i<T 2

Denoting the required dispersion by D, we obtain

(7) D = o-f -h O'!
'

• + crj + 2121,20- 10-2 •+ 2Ri,z<ti(Jz -f-
• •

* +
2Rn-—l,n(^n-~-l^n

SO that the dispersion of a sum can be obtained as soon as we know the

dispersion of its terms and their correlation coefficients.

In an important case, expression (7) for dispersion can be greatly

simplified. If the variables Xi, x^, . , , x^ are independent in pairs, we
see from (5) that all the correlation coefficients are == 0, so that in this

case simply

(8) D — o”f + O'! -h
• •

• ^ cr^ = ~ af + 62 ” clI + • * * +• bn —

In other words, the dispersion of a sum of variables, any two of which

are independent, is equal to the sum of dispersions of its terms.

8. A few examples will serve to illustrate the use of these formulas.

Problem 7. Find the dispersion of the number of successes in series

of n independent trials with probabilities pi, p^, . , . pn corresponding to

first, second, . . . nth trial.

Solution. As in Prob. 2 we associate with every trial a variable which

assumes the value 1 or 0, according as the trial resulted in success or

failure. These variables xi, x^, . . . Xn are independent because the

trials are supposed to be independent. The number of successes

m = + 0^2 + * •
• + Xn

is thus the sum of the independent variables. To find the dispersion of
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any one of these variables Xi we notice that

E(xi) = 1 • Pi + 0 • gi =
E{xf) = 1 • Pi + 0 • gi = Pi;

therefore the dispersion of Xi is

<^i = Ti - Vi = Vi^i

and by (8)

D = E(m - Pi - P2
- • * • - Vny = Pigi + V^q^ + * *

• + Pngn.

In the Bernoullian case of independent trials with the same probability

Pj we have pi = = • • • == p^^ = p and

E(m — npY = npg.

This formula is equivalent to the relation
n

^ T^{m — n-pY = npq
m = 0

established on page 116.

yt^roblem 8. In a lottery m tickets are drawn at a time out of n

tickets numbered from 1 to n. Find the dispersion of the sum s of the

numbers on the tickets drawn.

Solution. Let Xi, X 2 ,
. . . x^i be the variables representing the

numbers on the first, second, . . . mth tickets. By Prob. 5 we know that

E{x^) =

and in a similar way we find

= P + 2^ + • •
• + _ (n + l){2n + 1)

^

whence the dispersion of x,- is

n + — 1

12

Since we deal in the present case with dependent variables, we must

find the correlation coefficients, or, which is the same,

/ ^ -j- l\ / 'jfi -|- l\

2-K'-~)
for every pair of subscripts i and j. The variable Xi may have any of

the values 1, 2, 3, . . . n, with the same probability 1/n; and Xj may
have any of the same values with the exception of that assumed by oji
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with the probability so that the preceding expression consists of

terms

n{n
1 _ !L±iY^. _ !L±_A
- 1)V

* 2 A ' 2 )
where Xj for given rci = 1, 2, . . . n, ranges over all numbers 1, 2,

3, . . . n with the exception of Xi. As

it is obvious that

and

n

'(x- (x- 1 ^
Y' 2 pV’ 2 )

' - nin- 1)^'r 2 ;

_ n + 1

12

Everything now is ready for the application of (7) . All simplifications

performed^ we get the following expression of the required dispersion

^ _ m{n‘^ — 1)/. m — l\

I2~“V

If the variables were independent, the dispersion would be

m{n^ — 1)

12

The dependence diminishes it, but the influence of dependence is not great

if the ratio m/n is small.

Problems for Solution

1. Find the mathematical expectation M of the absolute value of the discrepancy

m “ np in a series of n independent trials with constant probability p. Ans. By
definition

n

M == Tmlrn — np\

Tm —
nl

ml(n — m)!

where, as usual,
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But since

Tm{m — np) — 0,

m= 0

we have also

^ = 2 ^ Trrt(m - np)j

m>np

the sum being extended over all integers m which are >np. Denoting by F(Xj y) the

Fix, y) = ^
m >np

we have

2 - np) = p— - npF(p, q).
dp

m >np

On the other hand, by Euler's theorem on homogeneous functions

^F
nF(p, q) =p— + 2—

>

dp dq

whence

/dF dF\
T’mC’w - np) = ”

ig j
npqC!!ZiP^~^T'~'‘-

m >np

Here p represents an integer determined by

Ac^np + 1 < p + 1.

The answer is therefore given by the simple formula

M —

2. By applying StirHng’s formula (Appendix 1, page 347) prove the following

result:

where

c = max.
I

and n is so large as to make c ^ Jfo-

Hint:

\np — 1 ng — 1/

1^1 < 1

,
/_ hnpq\ d-

,
t?' 1 / 1- 1 \

og
y \ ^

^
2(?ip — 1?) 2{nq — ^') 24

12(top - t?) 12(n2 - N) 4(np - 4(ng - tf')*
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yz. What is the expectation of the number of failures preceding the first success in

an indefinite series of independent trials with the probability p?

VQ Q
Ans, qp + + Zq^p —— = —

Balls are taken one by one out of an urn containing a white and h black balls

until the first white ball is drawm. What is the expectation of the number of black

balls preceding the first white ball?

Ans. 1. By direct application of definition the following first expression for the

required expectation M is obtained:

M -
au "{“ 6j fit ^

+ 2
6(6 - 1 )

(a -j- &

+ 3-

+
l)(a + 6 -2)

6(6~-l)(6~2)

(a + 6 ~ l)(a + & - 2) (a + 6 - 3)
+

Ans. 2. However, it is possible to find a simpler expression for M. Denote by xi the

number of black balls preceding the first white ball, by X2 the number of black balls

between the first and second white ball, and so on; finally, by Xa+i the number of black

balls following the last white ball. We have

Xi -i- -jr * *
‘ + Xa+i = h

and

E{xi) + E(x2) -f*
* •

* + E{xa+i) = b.

But as the probability of every sequence of balls (that is, of every system of numbers
Xif Xij . . . Xa+i) is the same, namely,

am
(a + 6)!

it is easy to see that

That is,

or

E{xi) = E{x2) = • • . = E{xa+i) = M.

{a + l)Jkf = 6

M -
h

d + 1

Equating this to the preceding expression for M, an interesting identity can be
obtained, whose direct proof is left to the student.

6. In Prob, 6, page 168, to determine the probability <p(n), we had an equation

II 2!
^(0) = L

Find the general expression for <p(n) using the method of generating functions. Ans.
Let

F{x) = ^=^(0) + <pil)x + <p{2)x^ + • • •

be the generating function of <p(n). Multiplying this series by

^'T!+^+3! +
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we find

or

whence

e^F{x) = • * • =
1 — X

e-x

1 — X

vin) - 1 - ^ + - - •
• +

(- 1)"

nl

\/6. The total number of balls in an urn is known, but the number of white balls

depends on chance and only its mathematical expectation is known. Find the prob-

ability of drawing a white ball. Ans. Let N be the total number of balls and M the

expectation of the number of white balls. The required probability is M/N.

vx: Two urns contain, respectively, a white and h black and a. white and jS black

balls. A certain number c (naturally not exceeding a + b) of balls is transferred

from the first urn into the second. What is the probability of drawing a white ball

from the second urn after the transfers? Ans. The required probability is

a -h
ca

a A- b

« + jS + c

8 , An urn contains a white and b black balls. After a ball is drawn, it is to be

returned to the urn if it is white; but if it is black, it is to be replaced by a white ball

^from another urn. What is the probability of drawing a white ball after the foregoing

operation has been repeated x times? Atis. Denote by Mx the expectation cf the

number of white balls after x operations. From the equation

Mx+i

the following expression for Mx can be derived

:

Mx — a A- b — bi

It follows that the required probability is

P

Mx + 1

d:

(i - -L-Y
\ a + bj

.6-—.Y-
Q, A~ b\^ CL A" bJ

9. Urns 1 and 2 contain, respectively, a white and h black and c white and d black

balls. One ball is taken from the first urn and transferred into the second, while

simultaneously one ball taken from the second urn is transferred into the first. What
is the probability of drawing a white ball from the first urn after such an exchange

has been repeated x times? Ans. Let Mx and Px represent the mathematical expecta-

tions of the number of white balls in the first and second urn after x exchanges. Then

Px Mx
.

c + d a A~b^
Mx+i == Mx “b Mx ”h Px — G> A~ 0
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whence

® a + 64-c + d a b c + dj

10

.

An urn contains pN white and qN black balls, the total number of balls being

N. Balls are drawn one by one (without being returned to the urn) until a certain

number n of balls is reached. What is the dispersion of the number m of white balls

drawn? Ans. Let = 1 if the ^th ball drawn is white and Xi = 0 if it is black.

We have

E{xi) = Pj E{m) = np, E{x\) = p

and

VQ
E{xi - p)ixi - p) = E{xiXi) -

The required dispersion is

D — E{m — npy = npq-
N -n
N - 1

11.

In a lottery containing n numbers (1, 2
, 3 ,

. . . n) m numbers are drawn at a

time. Let Xi represent the frequency of a specified number ^ in W drawings. Prove

that

where

12.

Let

E{xi) = Np, E{xi — Np)^ = Npq
E(xi - Np)(xj - Np) = Np(p' - p); (i 9^ j)

p = g = 1 - p, p' =
m — 1

n — 1

Zi = {xi — Np)^ — Npq.

Show that the dispersion of the sum

is

-j- ^2 -h ' * * Zn

^ 2N{N- 1 )^ ,,D = — {npqy.
n — 1

Indication of the Proof. Let N variables ^1, ^2, • • • be defined as follows:

— —p if in the Mh drawing the number i fails to appear

Ifc = g if in the kth drawing the number i appears.

In a similar way, we can define N variables 971, . . . r}N associated with the

number j 9^ i. Since

Xi — Np = d- ^2 + • *
• + Iv

Xj — Np = 7}i A' Vi -h • ’
• + 97W

we have

QUixi—Np) . ^v(xj’-Np) =s ^u^j+vrji .

The variables
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being independent, we bave

^(^Quixi-Np)+v(^xj-Np)'^ = . E{eHi'^^^2) • . - E{e'^^N+nN'),

But,

= j&(e“l2+®’?2) = . . . = ^(ew^w+®’7y) =
= p(l — p')e9““P^ 4- p(l — + (g — p

“
= i?(M, «).

Hence

It suffices to expand both members into power series in u and v and compare terms

involving to find

EiziZj); i9^j.

The rest does not present serious difficulties except for somewhat complicated calcula-

tions.

13, A box contains 2" tickets among which C^ tickets bear the number i {i ~

0, 1, 2, ... n). A group of m tickets is drawn; denoting by s the sum of their

numbers, it is required to find the expectation E and the dispersion D of s.

A T, 1
Ans. E == -mn:

2
D = -mn

4

mim — l)n

4(2^^ - 1)

’

14. A box contains k varieties of objects, the number of objects of each variety

being the same. These objects are drawn one at a time and put back before the

next drawing. Denoting by n the smallest number of drawings which produce

objects of all varieties, find E{n) and E{n^). Ans.

+i+ • . .
+l) +1+ . .

. +0^

Use the result of Prob. 12, p. 41.
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CHAPTER X

THE LAW OF LARGE NUMBERS

1. The developments of the preceding chapter, combined with a

simple lemma due to Tshebysheff, lead in a natural and easy way to a

far reaching generalization of Bernoulli’s theorem, known under the

name of the ^^law of large numbers.”

Tshebysheff’s Lemma. Let u he a variable which does not assume

negative values^ and a its mathematical expectation. The probability of the

inequality

u S dt^

is always greater than

whatever t may be.

Proof. Let

nij U2y • • • Un

be all the possible values of the variable u and

pi, . . . Pn

their respective probabilities. By the definition of mathematical expec-

tation, we have

(1) plUi 4- P2U2 + • •
* + PnUn = a.

We may suppose the notations so chosen that

U/\j Uf2, . » • U/ot

are all the values of u which are the reinaining values

ttce-fl, Ua-\.2, • • • U-n

being >at^. If all the terms in (1) with subscripts 1, 2, . . . a are

dropped, the left-hand members can only be diminished, since these

terms are positive or at least nonnegative by hypothesis. We have,

therefore,

PotJ^lUa+l + V • 4- S d.

But as

Ui > at^

182
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for i = a 4- 1, a + 2, . . . a still stronger inequality,

or

+ • •
• + Pn) < a

Vot+i + * *
* + Pn < p

will hold.

Here the left-hand member represents the probability Q of the

inequality

u > aP

because this inequality can materialize only in the following mutually

exclusive forms: either u = u a+i, or u = Ua+2 ,
ox u = Un whose

probabilities are, respectively, pa+2 ,
. . . Pn- Thus

But if P is the probability of the opposite event

we must have

whence

u ^ at^j

P -f Q = 1,

P > 1 ~ p

which proves the lemma.

2. Let:ri, a;2 ,
. . . be a set of stochastic variables and Ui, a2 ,

... an

their respective expectations. The dispersion of the sum

+ :r2 + * •
* + Xn

which we shall denote by Bn is, by definition, the mathematical expecta-

tion of the variable

u = (xi + X2 + • •
* + Xn — ai — a2 — • ' • “

Tshebysheff's lemma, applied to this variable u, shows that the proba-

bility of the inequality

(xi + X2 + * •
* + Xn ai — a2 -- • * • ~ Un)^ ^ Bnt^

is greater than
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But the preceding inequality is equivalent to two inequalities

— 1\/Bn = ^2 "f*
’ * * “4“ — * * * — dn ^ t'X/Bn

or, dividing through by n,

Xn ai + ^-2 4" * * *

"h Cln ^ ^
iBn

-t /:^ < + ^2 4-

n n

Hence, the probability of these inequalities for an arbitrary positive t

is greater than

I ^ h

Let e be an arbitrary positive number. Defining t by the equation

fK
t.

whence

P =

we arrive at the following conclusion: The probabilityP of the inequalities

-€ ^ Xl + X2 + ^ Xn 4" + 4" Cln

n n
^ e

equivalent to a single inequality

Xi X2 * •
• + Xn Ui + a2 4“ * '

* 4~ dn

n n

is greater than

Bn

Thus far nothing has been supposed about the behavior of Bn for

indefinitely increasing n. We shall now suppose that the quotient

Bn/n^ tends to 0 as nuncreases indefinitely. Then, having chosen two
arbitrarily small positive numbers e and rj, a number no can be found so

that the inequality

Bn
< n

will hold for n > no. Consequently, we shall have

P > 1 - 7)

for all n > no. This conclusion leads to the following important theorem
due, in the main, to Tshebysheff

:
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The Law of Large Numbers. With the 'prohability approaching 1 or

certainty as near as we please, we may expect that the arithmetic mean of

values actually assumed by n stochastic variables will diferfrom the arithmetic

mean of their expectations by less than any given number, however small,

provided the number of variables can be taken sufficiently large and provided

the condition

Bn .
0 as n —> CO

is fulfilled.

If, instead of variables Xi, we consider new variables Zi = Xi — ai

with their means = 0, the same theorem can be stated as follows:

For a fixed e > 0, however small, the probability of the inequality

iSl + ^2 + • ’
‘ + Zn

n

tends to 1 as a limit when n increases indefinitely, provided

This theorem is very general. It holds for independent or dependent

variables indifferently if the sufiScient condition for its validity, namely,

that

Bn ^—5- 0 as > 00

is fulfilled.

3. This condition, which is recognized as sufficient, is at the same
time necessary, if the variables Zi, Z2, . . . Zn are uniformly bounded;

that is, if a constant number (one independent of n), C, can be found

so that all particular values of Zi(i = 1
, 2, . . . n)^are numerically less

than C. Let P, as before, denote the probability of the inequality

1^1 + 212 + • *
* + ^ ne.

Then the probability of the opposite inequality

\zi A- ^2
‘

-h ^n\ > nG

will be 1 — P.

Now, by definition.

Bn = E{zi + ^2 + • •
* +

whence one can easily derive the inequality

Bn < n^C^(l -P) + nh^P
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from 'whicli it follows that

~ < CKl - P) + e^P < + (72(1 - P).

If the law of large numbers holds, 1 P converges to 0 when n

increases indefinitely, so that the right-hand member for sufficiently

large n becomes less than any given number, and that implies

which proves the statement.

4. There is an important case in which the law of large numbers

certainly holds; namely, when variables xi, x^, , . . are independent

and the expectations of their squares are bounded. Then a constant

number C exists such that

hi = E{x\) <C for f = 1, 2, 3, . . . .

On the other hand, for independent variables

n
.
n

Bn = ^
i = 1 t 1

and

Bn C ^_< ^0 as > 00 .

n

The expectations of squares are bounded, for instance, when all the

variables are uniformly bounded, which is true, for instance, for “iden-

ticaF^ or ^^equaF^ variables. Variables are said to be identical if they

possess the same set of values with the same corresponding probabilities.

5. E. Czuber made a complete investigation of the results of 2,854

drawings in a lottery operated in Prague between 1754 and 1886. It

consisted of 90 numbers, of which 5 were taken in each drawing. From
Czuber^s book ^^Wahrscheinlichkeitsrechnung,’' vol. 1, p. 141 (2d ed.,

1908), we reprint the table shown on page 187.

Withthe2,854drawings, we associate 2,854 variables, . . 0:2854

representing the sum of five numbers appearing in each of the 2,854

drawings. These variables are identical and independent with the

common mathematical expectation 227.5. Hence, by the law of large

numbers, we can expect that the arithmetic mean of actually observed
values of these variables will not notably differ from 227.5. To form
the sum

2864

8 = '^Xi
^ = 1
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Numbers
Their frequency

m
Difference

m — 158

6 138 -20
39, 65 139 -19
16, 41, 76, 87 142 -16
2, 14, 56, 79, 86 143 -15

18, 44, 47 144 -14
72, 80 145 -13
12 146 -12
21, 53 147 -11
70 149 - 9

24, 32, 55, 69 150 - 8

27, 64, 75 151 - 7

81 152 - 6

23, 29, 85 153 - 5

19, 35, 42, 74 154 -- 4

7, 20, 59 155 - 3

13, 34, 40, 67, 88 156 - 2

11, 52, 68 157 - 1

17, 82 158 0

15, 90 159 1

58 160 2

8, 25, 36 161 3

22 162 4

33, 57 163 5

51 164 6

3, 43, 45, 48 165 7

10, 26, 66 166 8

1, 5, 60, 84 . 167 9

50, 62 168 10

9, 61, 63 170 12

54, 73 171 13

49, 71, 78 172 14

28 173 15

37 176 18

30, 46 177 19

89 178 20

31 179 21

38 184 26

4 185 27

77 186 28

83 189 31

we must multiply the frequencies given in the preceding table by the

sum of corresponding numbers. To simplify the task we notice that all

numbers from 1 to 90, actually appeared. Hence, we multiply the

sum of these numbers, 4,095, by 158, which gives:

4095' 158 = 647,010,
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aad then add to this number the sum of the differences m — 158 multi-

plied by the sum of the numbers in the same line. The results are:

Hence

and

which differs very little from the expected value 227.5. An even larger

difference would be in perfect agreement with the law of large numbers

since 2,854, the number of variables, is not very great.

6. The two experiments reported in this section were made by the

author in spare moments. In the first experiment 64 tickets bearing

numbers 0, 1, 2, 3, 4, 5, 6 and occurring in the following proportions:

Number 0 1 2 3 4 5 6

Frequency 1 6 15 20 15 6 1

were vigorously agitated in a tin can and then 10 tickets were drawn at a

time and their numbers added. Altogether 2,500 such drawings were

made and their results carefully recorded. From these records we
derive Tables I and II.

Sum of positive products

22,336

Sum of negative products

-19,587.

S = 647,010 + 22,336 - 19,587 = 649,759

S
2854

- 227.67,

Table I

Number Frequency observed Expected frequency Discrepancy

0 404 390.625 + 13.375

1 2,321 2,343.75 -22.75
2 5,850 5,859.375 - 9.375
3 7,863 7,812.5 +50.5
4 5,821 5,859.375 -38 .375

5 2,344 2,343.75 + 0.25
6 397 390.625 + 6,375

The next table gives the absolute values of differences s — 30 where s

is the sum of the numbers on 10 tickets drawn at one time, and their

respective frequencies.

From Table I it is easy to find that the arithmetic mean of all 2,500

sums observed is:

74996
29.9984

2500
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Table II

|s - 30| Frequency observed |s - 30| Frequency observed

0 246 7 71

1 549 8 44

2 479 9 25

3 379 10 8

4 324 11 4

5 241 12 1

6 129

whereas the expectation of each of the 2,500 identical variables under

consideration by Prob. 13, page 181, is 30. By the same problem the

dispersion of s, that is, E{s — 30) ^ is 12.857. On the other hand, from

Table II we find that

and

S(s - 30)2 ^ 31477

S(s -- 30)2

2500
12.5908

fairly close to 12.857.

In the second experiment we tried to produce cards of every suit in n
drawings (n being the smallest number required) of one card at a time,

each card taken being returned before the next drawing. By Prob. 14,

page 181, we find that the expectation and the dispersion of this number
n are, respectively, 83^^ and 14.44. Altogether 3,000 values of n were

recorded, of which 33 was the largest. Values of the difference n — 8 are

given in Table IIL

Table III

n — 8 Frequency n — % Frequency — 8 Frequency

-4 6 77 16 3

-3 7 50 17 5

-2 426 8 40 18 2

-1 407 9 31 19 1

0 348 10 17 20 3

1 247 11 15 21 1

2 228 12 13 22 1

3 156 13 6 23 1

4 116 14 9 24 0

5 88 15 6 ^ 25 1

From this table we find

Mn - 8) = 965, ll{n - 8)2 = 43,395,
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whence

S(7i - 8i)2 = S(n - 8)" - f2(n - 8) + = 43,085

2n = 24,965.

By the law of large numbers we may expect that the quotients

Sn j S(ra — 8i)^

3000 3000

will not considerably differ from S}4 and 14.44, respectively. As a

matter of fact,

'Zn

3000
= 8.322,

S(n -- 8|)^

3000
14.362.

There is a very satisfactory agreement between the theory and this

experiment in another respect. Of 24,965 cards drawn there were

6,304 hearts

6,236 diamonds

6,131 clubs

6,294 spades

whereas the expected number for each suit is 6241.25.

7. So far, we have dealt with stochastic variables having only a finite

number of values. However, the notion of mathematical expectation,

and the propositions essentially based on this notion, can be extended to

variables with infinitely many values. Here we shall consider the

simplest case of variables with a countable set of values, that can be

arranged in a sequence

• *
* < < cc^i < ao < ai < 0:2 < * • •

in the order of their magnitude.

With this sequence is associated the sequence of probabilities

. . . , p_2, p-i, po, Pn P2, ...

so that in general pi is the probability for x to assume the value ai.

These probabilities are subject to the condition that the series

Spi = ;
V + p_2 + p~i + Po + Pi + P 2 + • • *

must be convergent with the sum 1.

The definition of mathematical expectation is essentially the same
as that for variables with a finite number of values, but instead of a

finite sum, we have an infinite series

E(x) = Xpiai

provided this series is convergent (it is absolutely convergent, if con-

vergent at all). If this series is divergent, it is meaningless to speak of



Sec. 8] THE LAW OF LARGE NUMBERS 191

the mathematical expectation of x. Likewise, the mathematical expec-

tation of any function (p{t) is defined as being the sum of the series

E{ip{x)} = 'Lpicp{ai),

provided the latter is convergent.

It can easily be seen that various theorems established in Chap. IX,

as well as Tshebysheff's lemma, continue to hold when the various mathe-
matical expectations involved exist.

The law of large numbers follows, as a simple corollary, from Tsheby-
sheff^s lemma if the following requirements are fulfilled

:

a. Mathematical expectations of all variables Xi, X 2j xsj . . . exist,

h. The dispersion Bn of the sum Xi + X2 + • •
• + Xn exists,

c. The quotient Bn/n^ tends to 0 as n tends to infinity.

The first requirement is absolutely indispensable. Without it the

theorem itself cannot be stated. The second requirement (not to speak

of the third) need not be fulfilled; and still the law of large numbers may
hold, as Markoff pointed out.

8 . Let Xij X2 j
Xzj . . . be independent variables. If for every i

the mathematical expectation

E(xD

exists, the quantity Bn exists also. But if at least one of these expecta-

tions does not exist, the quantity Bn has no meaning. However, the

following theorem, due to Markoff, holds:

Theorem. The law of large numbers holds, provided that for some

d > 0 all the mathematical expectations

i = 1,2,3, .. .

exist and are hounded.

Proof. For the sake of simplicity we may assume that

E{xi) = 0; i - 1, 2, 3, ... .

For, supposing

E(xi) = a»; i = 1, 2, 3, . . .

instead of Xi, we may consider new variables

Then

Zi = Xi — a*.

E(z^ == 0

and it remains to prove the existence and boundedness of

i — 1
, 2, 3, .
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The proof follows immediately from the inequalities

the first of which is well known; the second is a particular case of Lia-

pounoff^s inequality, established in Chap. XIII, page 265.

Thus, from the outset we are entitled to assume that

E(xi) = 0.

The proof of the theorem is based on a very ingenious and useful

device due to Markoff. Let JV be a positive number which later we shall

increase indefinitely. Together with Xi we shall consider two new varia-

bles, Ui and Vi, defined as follows: a being a particular value of x^, the

corresponding values of Ui and Vi are

Ui = a, 2;i = 0

if |a| g N and

Ui = 0
,

Vi = a

if
1
qj| > iV. Thus, stochastic variables Ui and Vi are completely defined.

Evidently

Xi = Ut + t;*

whence

0 = E{ui) + E{v,)

and

^i = E{ud = -E{v^),

Now

^ Ei\xi\^+^) < c

by hypothesis. Since Vi is either 0 or its absolute value is >iV, we have

N^E(\vi\) ^ E{\vi\^+^) < c,

whence

(2) m = <~
Likewise, the probability qt for Vi 9^ 0 satisfies the inequality

N^+^qi ^ < c,

Qi <
c

W+^'

whence

(3)
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Now, let us consider two inequalities

< cr

< 0
*

where cr is an arbitrary positive number and let Po and P be their respec-

tive probabilities. The inequalities (4) and (5) coincide when

Vl = V2
= • * * = = 0.

With this supplementary condition they have the same probability Q.

But they can hold also when at least one of the numbers

(4)

(5)

+ '2^2 + ’ * + Un

n

\Xl+ X2+ •
• + Xr,

1

n
1

Vlj V2, • • . Vn

is different from 0. Let the probabilities of (4) and (5) under such

circumstances be Po and P. Then

Po = Q + Po, P = Q + P.

But evidently neither Po nor R can exceed the probability that in the

series

Vl, V2y . . . Vn

at least one number is different from 0; this probability in turn does not

exceed (see Chap. II, page 30)

Hence

and

+ ^2 +
nc

A- qn jyi+s*

Po
nc P <

nc

(6) |P-Po|.<^,-

On the other hand, since none of the values of Ui{i = 1, 2, . . . n)

exceeds W, we have

Accordingly, the dispersion of the sum Ui + U2 + ' '
' + Un will be

less than

cnN^~’^.

Hence, by what has been proved in Sec. 2, the probability of the ine-

quality

+ W2 + * • * Ar Un + ^2 + * *
‘ + fin

n n(7)
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is greater than

1 -
e^n

But whenever (7) is satisfied, the inequality

(8)

Ml + Ms + • •
' + Un

n
< i 4- d-

• •
• + ^n|

= 2 n

is also satisfied. Hence, the probability of this inequality is a fortiori

greater than

4cJVi-»
1 -

€^n

Owing to inequalities (2), the following inequality follows from (8):

Ml + Ms + • • “1“ V^n

n
/ ^ _L. ^ _
< 2 iV*

Hence

and on account of (6)

Pa> 1
e^n

P > 1
4:cN^'~^ nc

e^n

Now we can dispose of the arbitrary number N by taking

2

Then

P > 1 - 2c|(?)-
Now AT" tends to infinity with n and as soon as n surpasses a certain

limit noj the fraction

c

will become and remain less than e/2. The probability of the inequality

Ui 4. ^2 + • *
• + Xn\

n
< €

for n > no will be greater than P and consequently greater than

1+5

1 - 2cl
^ ) n“«.
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It tends, therefore, to 1 as n tends to infinity, and that proves Markoff’s

theorem.

Example. Let the possible values of the variable Xp(p = 1, 2, 3, . . . ) be

p-i(^p 4- 1 ) 1^ 4. 2)1^ _{_ 2 )
5

^
, , ^

with the corresponding probabilities

P P P

p + 1 (p + 1)2’ (p 4- 1)3’
’ ’ ‘ •

Since the series

P P P

is divergent, the mathematical expectation

E(xl)

does not exist. Yet the law of large numbers holds. For

1 (P + 1)2
HI -5)

is a convergent series for any 0 < 5 < 1. Moreover,

.l(p + 1)2
(l-«)

1-a

2 2 - 1

and consequently the conditions of Markoff^s theorem are satisfied for any 0 < 5 < 1.

Hence, the law of large numbers holds in this example.

9. If variables Xi, Xz, , , . are identical, the law of large numbers
holds without any other restrictions, except that for these variables mathe-

matical expectations exist. In fact, Khintchine proved the following

theorem:

Theorem. //, as we may naturally suppose, E{xi) = 0, the probability

of the inequality

+ a:„

n

tends to 1 as n increases indefinitely.

Proof. The proof is quite similar to that of Markoff’s theorem and

is based on the same ingenious artifice. Let

• / * < a-2 < oL-i < az < ax K a% < *
* *

bedifferent values of any one of the identical variables a; 1, 072
,
0:3,

. . . and

... yp^t, p_i, po, Pi, P2, . . .
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their probabilities. By hypothesis

is a convergent series with the sum 0. The series

r. ^Pi\ai\

is also convergent; let c > 0 be its sum.

Keeping the same notations as before, we have

1^4 s E{\v^) = ^ vM = HN)
\cci{ >V

where ^{N) is a decreasing function tending to 0 as i\r oo. Also

E(u\) ^ NE\xi\ == cN

so that the dispersion of the sum

+ '2^2 + ‘ *
* +

is less than

cNn.

Consequently the probability of the inequality

(9)

is greater than

Ui + U2 *
'

* + Un

n n
<1= 2

AcN

On the other hand, the probability qs of the inequality ^ 0 is less

than

HN)
N

because

and

N X .

\ai\ >N

|ai| >N

Hence, the difference between the probability of the inequality

< <r

Ui + Ut+ ' + Un

n
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and that of the inequality

a:i + a:2 4- * •

“f”

n
< or

is numerically less than

nxp(N)

As in the preceding section we conclude that the probability of the

inequality

^1+^42+ * * "4“

n ^ I +m
is greater than

1 - 4:cN

e^n

Finally, the probability of the inequality

(10)

is greater than

a?! + ^2 + * * “4"

n g I +m
1 - 4ccN n\p(N)

N
To dispose of N we observe that the ratio

VW)
N

is a decreasing function of N and tends to 0 as iV oo . Hence, at least

for large n, there exists an integer N such that

vW) < ^ - 1)

N
Then

en = N -1

4:cN . "v/lc N

whence it follows that the probability of inequality (10) is greater than

1 - \/4c| Nvm) + - 1)

Now N increases indefinitely together with n; therefore, for all n

above a certain limit no,

HN) <
I
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SO that for n > na the probability of the inequality

+ Xj A-
• • + a;„ ^ ^
n

will be greater than

- 1
)]

and with indefinitely increasing n will approach the limit 1. Thus

Khintchine’s theorem is completely proved.

Example. Let

21-2logl^ 22-2l0&2^ 23-2los3^
^ ^ ^

2»—2lo8n^
. . .

be all possible values of identical variables xiy x^j x^y . . . and

III i
2 22’ 23'

* *

' 2«
* ' "

their corresponding probabilities. Since the series

-i_ + —L + _i_ +
22iogl

‘

' 22log3
1 J

j
L~

2^°®^ ' 3108:4
'

is convergent, mathematical expectations of the variables xij Xz, > . , exist.

Hence, the law of large numbers holds in this case.

Markoff’s theorem cannot be applied here, because for any positve 6 the series

\
2”*

j
72,(1+5)108 4

is divergent.

Problems for Solution

1. Let a; be a stochastic variable with the mean = 0 and the standard deviation a.

Denoting by P(t) the probability of the inequality

show that

P(^) ^^
^ 0-2 + ^2

<r2

1 -- PW ^
0-2 +t2

for f < 0

for t > 0.

Show also that the right-hand members cannot be replaced by smallemumbers.
iTidication of the Proof. Since

we have also

TipiXi = 0, XpiX^ = <r2,

:spi{xi - 0 = -t, iipiixi - ty = £r2 -I-
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whence, supposing that a:,- > « for i = 1, 2, . . . s and first taking t negative,

U = i

1 - Pit) ^

I ~ 1 i= 1

^2 ^
P(t) ^

<r2 -f

For positive t the proof is quite similar. Considering a stochastic variable with

two values:

^2

Xi i, Pi ^
<r2 -j-

Xz ~
> Pz — -

t ^ (r2 -f t2

one can easily prove the last part of our statement.

2. Tshebysheff’s Problem,^ If a? is a positive stochastic variable with given

B{x) Em
then the probability P of the inequality

X V

has the following precise upper bounds:

P SI for V < <r2

PS— for <r^ ^ e; < —

P ^
^4 4. j;2 _ 20-%

Indication of the Proof. Let

for t? ^

<rh} —

Then ^ if v ^ and

since

for X ^ p. On the other hand,

e(

whence

(^)
s 1

4 _ 2<r2f +
(» - {)» r* + 0* - 2o-%

P ^ — Scr^

^ Sur les valeurs limites des integrales, Jour. lAouville, Ser. 2, T. XIX, 1874.
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The equality sign is reached for the stochastic variable with two values:

(v - 0-2)2

Xl - 5, Pi -
^4 + _ 2<r2o

X2 = V, P2 =

If 0-2 ^ r < r^/o-2 we have an obvious inequality

p s = -•

To show that the right-hand member cannot be replaced by a smaller number, con-

sider the following stochastic variable with three values:

— n = £:
— a-^)v — Zcr2 .J.4

Xi Pi
Iv

__
Icr^

X2 = V, P2 "
v(l -t;)

= «.
_ — crh)

Xz pz ~
Z(Z

where Z > i; is an arbitrary number. For this variable

0-2

P = P2 + pa =
V Iv

is arbitrarily near to <t^/v for sufficiently large 1.

3. If X is an arbitrary stochastic variable with given

E(x^) = (r2, E(x^) =

and P denotes the probability of the inequality

\x\ ^ k<T,

P if 1 ^ Zb <

if k

+ Zb^ - 2Zb2

These inequalities cannot be improved. ^
Hint: Follows from Tshebysheff’s problem.

4. Let Xi assume two values, i and —i with equal probabilities. Show that the

law of large numbers cannot be applied to variables xi, a: 2 ,
Xz, ....

6. Variables xi, X2 ,
Xz^ . , . each assume two values:

log a or —log a; log (a + 1) or —log(a+l); log (a +2) or —log(a + 2); • • •

with equal probabilities. Show that the law of large numbers holds for these vari-

ables.



THE LAW OF LARGE NUMBERS 201

Hint: E{xi) = 0; t = 1, 2, 3, . . .

Bn = F{xi + a;2 + • •
• 4” Xn)^ =

n-~l

~ ^ + 1)}2 (a + n — l){log (a + w -- 1)}2

i = 0

as can easily- be established by using Euler’s summation formula (Appendix 1, page
347). Hence

0 n —> oo

.

6. If Xi can have only two values with equal probabilities, and show that the

law of large numbers can be applied to Xij rc2 ,
. if oe <

Hint:

^ 20£+1 D 1

= P«+22«+ . .
. ^^0 if ^<i.

2a 1 2

It can be shown that the law of large numbers does not hold if o: ^ 3^.

7. In an indefinite BernouUian series of trials with the constant probability p,

let mi denote the number of successes in the first i trials. Show that the law of large

numbers holds for variables

mi —
^ - 1, 2, 3, .

if a >
Hint: Evidently E(xi) - 0, E(Xi) - (zpgr)i-sa ^nd

B„ = + 2^E{xai).
i=l j>i

Now

E{xiXj) = {ij)^{pqY^^E{mi — ipY + {ij)^{pqy^^E\{mi - {j
— i)p)] =

= {pqY-^'^j-^

since — ip and m, — mi — (j — i)p are independent variables. Thus

n

i = 1 j >i

and it is easy to show that

as n —» 00

provided a > J4- But the law ctf large numbers no longer holds if ck ^ 34- The
proof of this is more diflScult.

8.

The following extension of Tshebysheff’s lemma was indicated by Kolmogoroff.

Let xif X2 , . . be independent variables; E(xi) = 0, Eix^) = bi,

= 6i + 62 4" * •
* 4"
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and

sjfe = ici + a;2 4- * ' * + a;*; fc = 1, 2, . . . n.

Denoting by P the probability of the inequality

(A) i max. ($5, si, , si) >

we shall have P < 1/t^.

Indication of the Proof. The inequality (A) can materialize if and only if one of

the following mutually exclusive events occurs:

event er. si > Bnt^;

event e^: $1 ^ Bnt^; si > BnP;

event czi $1 ^ BnP; s| S BJ^; s® > Bj^;

event ^ Bnt^; S 2 ^ • • • sLi =

If (ei) represents the probability of Ciii == 1, 2, . . . n) then

P = (ei) + (^2) “]-•*•-}- (en).

Now consider the conditional mathematical expectation E(sl\ek) of si given that

ek has occurred. Since the indication of ek does not affect variables Xk+i, . . . Xn,

these variables and Sk are independent. Hence

E{sl\ek) = E(sl\ek) + 6a+i -f-
• •

• + 6n > BnP.

On the other hand

Bn = E(sl) = (e&)P(s^|efc) > Bnt’^{(ei) + (€2) -f-
. .

. (^n)}

A? = 1

whence P < l/P.

9. The Strong Law of Large Numbers (Kohnogorojf)

.

Using the same notations

as in the preceding problem, show that the probability of the simultaneous inequalities

S»+2

n 4 1
— '

w + 2

will be greater than 1 — 77, provided n exceeds a certain limit depending on the choice
of 6 and rj, and granted the convergence of the series

1

Indication of the Proof. Consider variables

Ti = max. for Vi 2*-i» <2^; ,i ^ 1, 2, 3, . , .

and denote by the probability of the inequality n > By Kolmogoroff^s
lemma

Z=s2*n— 1

4 6i

“ 2*‘-W
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and

« — 1 oo Zas2»n —

1

5i +32 +9, + • •

• X bt< 16e-»2 |
ts=l Z=2*~i7i 1 = 1

or

00

S’! + ffz + ?3 4- * * • < ^ ~

-

k^n

Hence, the probability of fulfillment of all the inequalities ri ^ Me; i = 1, 2, 3, . . .

is greater than

-

k — n

The inequalities \8k/k\ ^ e;k = n, n 4- 1, 4- 2, . . . are satisfied when simul-

taneously

Tf ^ §€; t = 1, 2, 3, . . .

and

Srt— 1|

4B
The probability of the last inequality being greater than 1 -y the probability

of simultaneous inequalities

S e; fc = n, n 4“ Ij 4- 2, . . .

a fortiori will be greater than

\bk 4:Bn
1 - 166'-2

k^n

This inequality suffices to complete the proof if we notice that BnM* tends to 0 when
the series

k^i

is convergent,

10. Let xi, Xa, . . . Xn be identical stochastic variables and B(a;i) == 0. Denoting

by Pn(e) and Pn(e)j respectively, the probabilities of the inequalities

aji 4- 4- +• a?n ^ , xi 4“ a;2 4“
> € and — + Xn

< — e

show that

.. Pn{e)
lim = 0 or 4”

n- ooP„(6)

^according as E(xf) > or <0.
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For the proof see Khintchine's paper in Mathematische Annalen (vol. 101, pp. 381-

385).

11. The Law of the Repeated Logarithm {Khintchme, Kolmogoroff). Let Xi^ Xi,

... Xn he bounded independent variables, E(xi) = 0, ^ = 1, 2, . . . w and Bn <»

as n —> 00 . For an arbitrarily small 5 > 0 and e > 0 and for an arbitrarily large N
one can choose Uq > N so that:

a. The probability of the fulfillment of the inequality

|5«| >(14- 5) log log Bn

for at least one n ^ no is less than e.

b. The probability of the fulfillment of the inequality

> (1 - d)\/2Bn log log Bn

for at least one n ^ no is greater than 1 — e.

For the proof see Kolmogoroff^s paper in Mathematische Annalen (vol. 101, pp. 126-

135).

If Xi, X2,
. . . Xn are variables independent in pairs and Bn the dispersion of their

sum s = ail 4- 4“ • * * -h Xn, then the probability P that

|s| s tVK
satisfies the inequality

P > 1 _ 1 (Xshebysheff ’s inequality)

provided P(a;i) =0, i = 1, 2, . . . n, which can be assumed without loss of generality.

In case variables are totally independent and are subject to certain limitations of com-
paratively mild character, S. Bernstein has shown that Tshebysheff^s inequality can be
considerably improved.

12. Let xi^ X2j
. . . Xn be totally independent variables. We suppose E{xi) = 0,

E(Xi) = bi and

for f - 1, 2, ... 71 and h > 2, c being a certain constant. Show that

A = • +«n)} < e2(l-<r)

where or is an arbitrary positive number <1 and e is a positive number so small that
€C ^ <r.

Indication of the Proof. We have

6“* g 1 + ec, +
n «=2

iS(e“<) ^ 1 + 1^“5 («)" <
n «=0

whence
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13. If Q denotes the probability of the inequality

Xi + Xi + + Xn > " + -
— or) e

show that Q < e~^^.

Indication of the Proof. If Q is the probability of the inequality

g€(xi+a,2+ • • • +a5„) ^

then, by Tshebysheff’s lemma, ^ and Q < Q by Prob. 12.

14. S. Bernstein’s Inequality. Denoting by P the probability of the inequality

laJi + a:2 + • •
* + rc„| ^ co,

w being a given positive number, show that

P > 1 - 2e 25n+2ct0.

Indication of the Proof. To make —
- + — == p minimum take e =

2(1

and t is determined by equating F to co. The resulting value of e,then F
I 2Bn

=Ww
. = -d - <r)

Coj Cod

is admissible only if €C ^ o- or —(I — a-) S <r. The best choice for cr is o' = --—;

Bn Bn +

and correspondingly t —
\/2Bn 4" 2coj

Xi X2 Xn > 0)

By Prob. 13 the probability of the inequality

is less than e
2i?n+2c&)^ same is true of the probability of the inequality

Xi X2 + • •
• + < —w or —Xi — X2 — • • • —Xn > co.

16. If variables Xi, x^, . . . Xn are uniformly bounded and M is an upper bound

of their numerical values, then we may take c = MjZ.

Indication of the Proof. Note that

^ hiM^- iKir-
16. Consider a Poisson's series of trials with probabilities pi, p 2,

. . . Pn for an

Pi -j— P2 “I”
• * • —}- Pn

event E to occur. Let m be the frequency of P in n trials, p == —
3

X == + P 2g2 + • *
* Pn<ln)‘ Show that the probability P of the inequality

-p S. e has the following lower limit:

P > 1 - 2e
2x+^
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In the Bemoullian case pi — pt — =Pn, X = and consequently

p > 1 - 2^

17. An indefinite series of totally independent variables Xi, X2,
Xs, . * . bas the

property that the mathematical expectations of any odd power of these variables is

rigorously = 0 while

2

(2^)1
.

kl
' bi - Eixl)

for f = 1, 2, 3j . . . . Prove that the probability of either one of the inequalities

iCi + 332 “h ‘ * *4“ iCn >• Or iTi 4” iC2 4" ‘ ‘
* Hh <C — t‘\/2Bn

where Bn - h + + • •
• 4- &n is less than (S. Bernstein). Prove first that

E(e^i) ,

18. Positive and negative proper decimal fractions limited to, say, five decimals,

are obtained in the following manner: From an urn containing tickets with numbers

0, 1, 2, ... 9 in equal proportion, five tickets are drawn in succession (the ticket

drawn in a previous trial being returned before the next) and their respective numbers
are written in succession as five decimals of a proper fraction. This fraction, if not

equal to 0, is preceded by the sign 4~ or —
,
according as a coin tossed at the same time

shows heads or tails. Thus, repeating this process several times, we may obtain as

many positive or negative proper fractions with five decimals as we desire. What
can be said about the probability that the sum of n such fractions will be contained

between prescribed limits — cd and co? Ans. These n fractions may be considered as

so many identical stochastic variables for each of which

(1 - 10-”5)(2 - 10“5) 1
P(a;2*+1) = 0 , ^ = E(x^) - ^ 1

Besides,

106-1

10io*+6
2A; 4- !

since in general

4. 22* + . .
. + (5 - 1)2* <

2/c 4“1

Again, the inequality

E{x^) ^
A* (2k)l

2/ k\

can easily be verified and we can apply the result of Prob. 17. For the required
probability P the following lower limit can be obtained:

P > 1 - 2e > 1 - 2e~

3c«>*

2n ,
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or, if w = ne

P > 1 - 2e

For example, if e = J^o and n ^ 814,

P > 0.99999,

that is, almost certainly the sum of 814 fractions formed in the above described man-
ner will be contained between —82 and 82.
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CHAPTER XI

APPLICATIONS OF THE LAW OF LARGE NUMBERS
1. A theorem of such wide generality as the law of large numbers is a

source of a great many important particular theorems. We shall begin

with a generalization of Bernoulli's theorem due to Poisson.

Let us consider a series of independent trials with the respective

probabilities pi, p 2 , ps, . . . ,
varying from one trial to another. Con-

sidering n trials, we shall denote by m the number of successes. The
arithmetic mean of probabilities in n trials

= Pi + Pg + ’ ' ‘

^ n

will be called the ^^mean probability in n trials.^^ With such conditions

and notations adopted, we can state Poisson’s theorem as follows:

Poisson’s Theorem. The probability of the inequality

for fixed e > 0, no matter how small, can be made as near to 1 {certainty) as

we please, provided the number of trials n is sufficiently large.

Proof. To show that this theorem is but a particular case of the law

of large numbers, we use an artifice often applied in similar circum-

stances, namely, we associate with trials 1, 2, 3, ... n variables Xi,

X2, Xzj • , • Xn defined as follows:

Xi = 1 in case of success in the ith trial,

Xi = 0 in case of failure in the ith trial.

Since the trials are independent, these variables are also independent.

Moreover

E{xi) = E(xl) = Pi

and the dispersion of Xi is

Pi - 2><
=

The dispersion Bn of the sum

Xi + X2 + ‘
* + Xn

is the sum of the dispersions of its terms, that is,

Th
Bn = Piqi + P%q2 4- * *

* + Pnqn S

At the same time, the former sum represents the number of successes m.
208
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Now, applying the results established in Chap. X, Sec. 2, we arrive

at this conclusion: Denoting by P the probability of the inequality

m
n
- V

we shall have

P>1- Bn
^ 1 -

4:ne^

It now suflS.ces to take

n >
4e^rj

to have

P > 1

where rj is an arbitrary positive number no matter how small. That
completes the proof of Poisson^s theorem.

Evidently Bernoulli’s theorem is contained in Poisson’s theorem as a

particular case when .

Vl = V2 = • • • = Prt
=

Poisson himself attached great importance to his theorem and adopted

for it the name of the ^Taw of large numbers,” which is still used by many
authors. However, it appears more proper to reserve this name to the

theorem established in Chap. X, Sec. 2, which is due to Tshebysheff.

2 . Let us consider n series each consisting of s independent trials with

the constant probability p. Also, let

mi, m2,
. . . Mn

represent the number of successes in each of these 5 series. Stochastic

variables

Xi = (mi — spy, X2 = (m2 — spy, •
• • = (mn — spy

are independent and identical. Their common mathematical expecta-

tion is spq. The law of large numbers can be applied to these variables

and leads immediately to the conclusion: The probability of the inequality

n

- spy

can be brought as near as we please to 1 (or certainty) if the number of

series n is sufficiently large.
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Substituting iSfq for e and dividing through by spq, we may state the

same proposition as follows : The probability of the inequalities

1

- s-pY

Npq
<1 + 6

,

where N == ns is the total number of trials in all n series, can be brought

as near to 1 as we please if the number of series is sufficiently large.

The law of large numbers can be legitimately applied to the variables

Xi == [mi — sp\; i = 1, 2, 3, . . .

with the common mathematical expectation

Ms = 2spqC^sZiV^~^q"''^

where p = [sp + 1], and leads to the following proposition: The proba-

bility of the inequalities

n

- sp|

1 - € < < 1 + e
nM,

can be brought as near to 1 as we please if the number of series is suf-

ficiently large.

For the sake of simplicity, let us use the notations

- spy

= iri
n

n

- sp|

B =
n

The probabilities P and P' of the inequalities

(1) — o) < A < 's/spqil + cr)

(2) Ms{l - cr) <B < Ms{l + cr)

which are equivalent to

^(mj - spY

(1 - <rY <

1 — cr <

2

nspq < (1 + <rY

- sp|

i=» 1

nM, < 1 -|- <r
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can both be naade greater than 1 — ij, where -q is an arbitrarily small

positive number. The probability of simultaneous materialization of

(1) and (2) is not less than

P + P' - 1 > 1 - 2t/.

But whenever (1) and (2) hold simultaneously, we have

(3 )

\/spg 1 — <T ^ A ^ -s/spq 1 + tr

M, rr^ ^ s ^ ~m7
Therefore the probability of these inequalities is again >1 — 2tj. Now
let us take

2 + r

where t is another positive number arbitrarily chosen. Then

1 d-tr

1 - <r

Hence, the inequalities

\/spq

= l+r; 1 - .r

1 + O'

> 1

follow from inequalities (3) and their probability is a fortiori > 1 — 277 .

It suffices to take

r
y/spq

to arrive at the following proposition:

The probability of the inequality

A Vaw
B ~M7 < €

for a fixed e and sufficiently large number of series can be made as near to

1 as we please.

If spq is somewhat large, the quotient

Vw
Ms

differs but little from 's/7r/2 (see Chap. IX, Prob. 2, page 177). Hence,

when the number of series is large and the series themselves sufficiently

long, we may expect with great probability that the quotient

A
B

will not differ much from \/irl2.
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DrVEEGENCE COEFFICIENT

3. The considerations of the preceding section can be generalized.

Let us consider again n series containing s trials each, and let

mi, m2, . . . rrin

represent the numbers of successes in each of these series. Without

specifying the nature of the trials (which can be independent or depend-

ent) we shall denote by p the mean probability in all N = ns trials and

by g = 1 — p its complement. Again considering the quotient

n

'^(rui - spy

Q = ’

Npq

we seek its mathematical expectation

E{Q) = D.

When all the N trials are of the Bernoullian type, D == 1. But it is also

possible to imagine cases when D > 1 or Z> < 1. Lexis calls \/D the

'^coefficient of dispersion.’^ We shall call D itself the "theoretical

divergence coefficient.” If mi, m2,
. . . m^ are actually observed fre-

quencies in n series, the quotient

- spy

jy — Izi
Npq

may be called “empirical divergence coeiEcient.” Then, if the law of

large numbers can be applied to variables

Xi =
{rrii — spY ^

spq ’

i — 1, 2, 3,

we can expect with probability, approaching certainty as near as we please,

that the inequality

ID' - D| < 6

will be fulfilled for an adequately large number of series.

Thus far we have not specified the nature of the trials. Now we shall

suppose that all N = ns trials, distributed in n series, are independent
but with probabilities var3dng in general from trial to trial. Let

Vui P 2i, . . . v,i (i ===1,2,... n)
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be the probabilities in successive trials of the ith series. Their mean

„ _ Pk + P2i + • •
• +

p. _ ,

!

is the mean probability in the ^th series. Finally

^ Pi + P2 + •
‘ + yn

^ n

is the mean probability in all N = ns trials. As to the expectation of

{mi — spYy we find

E{mi — spY = E{mi — spi + s(j)i — p)Y == E{mi — sp^)^ + s^{pi — pY
since

E(mi — spi) = 0.

On the other hand,
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Lexis^ Case. Probabilities remain the same within each series,

but vary from series to series. In this case 'pji = pi and the expression of

D becomes

:

n

2) = 1 +
npq ^

i = l

The theoretical divergence coefficient in this case is always greater than

1 and may be arbitrarily large.

Poisson’s Case. The probabilities of the corresponding trials in all

series are the same, so that

Va =
and

^1 + '3r2 + ' •
* + Xs

p = Vi ^

In this case the divergence coefficient

X (y
-

B = l - m
is always less than 1.

Since the law of large numbers evidently is applicable to variables

^ (m,- -
spq

’

we may expect that the empirical divergence coefficient D' will not
differ much from D if the number of series is sufficiently large.

For numerical illustration let us consider 100 series each containing

100 trials, such that in 50 series the probability is % and in the remaining

50 series it is Here we evidently have Lexis’ case. The mean
probability in all trials is

V = h
and

lOO

~ P*)' == + 50 • Tir = 1-

t = l

Finally,

i) = 1 + H = 4.96.

Now, suppose that we combine in pairs series of 100 trials with

probability % and series of 100 trials with probability to form 50
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series each of 200 trials. Evidently we have here Poisson’s case. The
mean probability in each series again is 2? = M

200

^ (2 ““ TTi)^ = 100 *

-x-J q- + 100 ' = 2.

^ = 1

Finally,

D = l - ^ 0.96.

The consideration of the divergence coefficient may be useful in

testing the assumed independence of trials and values of probabilities

attached to these trials. In the simplest case of Bernoullian trials with

a constant and known probability, the theoretical divergence coefficient

is 1. Now, if the number of series is sufficiently large and the empirical

divergence coefficient turns out to be considerably different from 1,

we must admit with great probability that the trials we deal with are not

of the supposed type. If, however, the empirical divergence coefficient

turns out to be near 1, that does not conclusively prove the hypothesis

concerning the independence of trials and the assumed value of the

probability. It only makes this hypothesis plausible.

There are cases of dependent trials (complex chains considered by
Markoff) in which the theoretical divergence coefficient is exactly 1 and

the probability of an event has the same constant value in each trial,

insofar as the results of other trials remain unknown. Cases like that

may easily be mistaken for Bernoullian trials without further detailed

study of the entire course of trials.

4. When there is good reason to believe that the trials are independent

with a constant but unknown probability, we cannot in all rigor find the

value of the empirical divergence coefficient

n

^ (mi - spy

D' =
Npq

to compare it with the theoretical divergence coefficient D = 1, since p
remains unknown.

But, relying on Bernoulli’s theorem, we can take the quotient

where

M
N

M = i7ii H- m^, -I"
• * * "4“

as an approximate value of p. By taking p = M/N in the preceding

expression for D' we get another number
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n

mV

D" =
M(JV - M)

which in general is close to D'

.

However, considering mi, m2 ,
. . . m„

not as observed but as eventual numbers of successes in n series, the

mathematical expectation of B" is different from 1. To avoid this

difficulty, it is better to consider a slightly different quotient

Q

n(N -
i = 1

(n - 1)M{N - M)

For this quotient there exists a theorem discovered and proved for the

first time by the eminent Russian statistician Tschuprow.

Theorem. The mathematical expectation of Q is rigorously equal to

Proof. Here we shall develop the proof given by Markoff. The
above given expression of Q presents itself in the form % and therefore

has no meaning in two cases: M = 0 or ikf = iV'. For these exceptional

cases we set Q == 1 by definition. If neither Af = 0 nor M = N, we
can present Q in the form

(4) Q
n(N 1) S’”*- n

M{N - M)

Considering mi, m2,
. , . as stochastic variables assuming integral

values from 0 to §, the probability of a definite system of values

IS

mi, m2,

si

. rrin

si

mil(s — mi) I ??^2 l(s ~ m2)l mnl(s — mn)l^ ^

To get the expectation of Q we must multiply it by P and take the

sum
E{Q) - SPQ

extended over all non-negative integers mi, m2, . . . m„, each of them
not exceeding s. To perform this multiple summation we first collect

all terms with a given sum

mi -f- m2 + • •
• 4- = Af.

^
The theorem itself and its proof given by Markoff can be extended to the case of

series of unequal length.
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Let the result of this summation be Sm. Then it remains to take the

sum
N

ikr=o

to have the desired expression E{Q). To this end we first separate two
terms corresponding to M = 0 and M = N. In the former case

mi = m2 = • • • = = 0

and the probability of such an event is while Q = 1. In the latter

case

mi — m2 = * * * = mn = s

the probability of which is while again Q = 1. Thus

N-l

E{Q) = pN qN ^
ikf=i

To find Sm we observe that the denominator of Q has a constant value

when summation is performed over variable integers mi, m2 ,
, , . mn

connected by the relation

mi + ^2 + • •
• + mn = M.

Hence, it suffices to find two sums

SP and SPmf

extended over integers mi, m2 ,
, , . mn varying within limits 0 and s

and having the sum M. To this end consider the function

y = {pte^^ + qy{'pte^^ + qY ’ '
' (pte^^ +

involving n + 1 arbitrary variables t, ^ 1 , ^ 2 ,
• . . ?n. When developed,

y consists of terms of the form

ppnv\-7nT^ • • •

Evidently we obtain the sum hP by setting = f2 = • • • = In = 0

and taking the coefficient of in the expansion

— f„=o = (pi +
Thus

To find SPmf take the second derivative

dW
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and after setting = ^2 == in = 0, expand

and take the coefl&cient of Thus we find

(6) 2Pm| =
(AT-l)! +S(S— 1);;

(iV-2)!

Referring to (4), (5), and (6), we easily get

•pMqN

Si
n{N - 1) (iV - 2)\N 4nN — n +

{n - 1)M{N - M) ' n{M - 1 ) \{N - M) I"'

+ (iV — n){M — 1) — M{N —

or, after obvious simplifications,

N\

Hence

- M<{N- iDri''"-

2 = (p + = 1 -
iV~l

s
M = 1

and finally

E{Q) = 1.

Markoff, using the same method, succeeded in finding the explicit

expression of the expectation

E{Q - 1)\

Since there is no difficulty in finding this expression except for some-
what tedious calculations, we give it here without entering into details

of the proof:

E(Q - 1)2 = 2NiN - n)

N-l
'M- 1 N-M -I

(n-l)(M-2)(iV-3)^ M
M= 1

N-M
whence the following inequality immediately follows:

2N{N - n)
E{Q - 1)2 <

{n - 1){N - 2){N - 3)

In case n ^ 5 a still simpler inequality holds:

2
(7) E{Q - 1)2 <
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Let B be the probability of the inequality

where 6 is a positive number. Applying the same reasoning to inequality

(7) as was used in establishing Tshebysheff’s lemma, we find that

p ^ 2
^ (n - l)*^'

Likewise, denoting by R' the probability of the inequality

we have

^ (n - l)*^’

Thus, in a large number of series it becomes very unlikely that i.ne

value of Q found in actual experiment would lie outside of the inter \^al

1 — 1 + 6. For instance, the probability for Q ^ 2 in 100 series is

surely less than

99

or nearly 0.02. However, this limit is much too high. It would be

greatly desirable to have a good approximate expression for the proba-

bility of either one of the inequalities

Q^1 + € or — e.

But this important and difficult problem has not yet been solved.

5. In order to illustrate the foregoing theoretical considerations we
turn to experiments reported by Charlier in his book “Vorlesungen

liber die Grundziige der mathematischen Statistik^^ (Lund, 1920). He
made 10,000 drawings of single cards from a complete deck of 52 cards

(each card taken being returned before the next drawing), and noted

the frequency of black cards. The drawings were divided into 1,000

series of 10 cards, or into 200 series of 60 cards. The results are given

in the tables on page 220.

Assuming the independence of trials and the constant probability

jP = /4j theoretical divergence coefficient must be 1. Let us compare

it with the empirical divergence coefficient derived from Tables I and II.

To this end we multiply the squares of numbers in the second column

by the numbers given in the third column. The results are:

For 200 series of 50 cards

S(mi — psy = 2,487

For 1,000 series of 10 cards

X{mi — ps)^ ~ 2,419
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Table I.

—

Ntjmbek of Black Cards in

200 Groups of 50 Cards Each

Frequency
Difference

m ~ 25

Number of

groups with

these

frequencies

14 -11 1

15 -10 0

16 - 9 2

17 - 8 2

18 - 7 4

19 - 6 8

20 - 5 6

21 - 4 15

22 - 3 13

23 - 2 15

24 - 1 34

25 0 14

26 1 21

27 2 26

28 3 14

29 4 10

30 5 5

31 6 5
32 7 3

33 8 2

Table II.

—

Number of Black Cards in

1,000 Groups of 10 Cards Each

Frequency
Difference

m — 5

Number of

groups with

these

frequencies

0 -5 3

1 -4 10

2 -3 43

3 -2 116

4 -1 221

5 0 247

6 1 202

7 2 115

8 3 34

9 4 9

10 5 0

Dividing these numbers by 10,000 • }4c = 2,500, we get the following

empirical divergence coefficients:

D' = 0.9948; D" = 0.9676.

Both are close to 1, so that the hypotheses of independence of trials

and constant probability for each of them, are in good agreement with

empirical results. The second divergence coefficient, corresponding to

more numerous groups, differs from 1 more than the first, corresponding

to only 200 groups. But such a difference can be accounted for by
fluctuations due to chance.

Series of 50 trials are long enough to test the theorem established in

Sec. 2 of this chapter. The quantities denoted there by A and B are

here correspondingly:

A = 3.5263

B = m; B - 2.805

whence

g
= 1.2571
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while

^ - 1 .2533 .

Again the difference, only about 4.10“^, is rather small.

In this example, the probability of drawing a black card was assumed

to be In case we do not know the probability, but suppose it to be

constant throughout 10,000 independent trials, we must consider the

coefficient

^ _ MY_
^ (n - 1)M(N - M)2j[ ‘

5=>1

In our example

n = 1,000; N = 10,000; M = 4,933

To evaluate the sum

M
s = 10; = 4.933.

1,000

/S = ^(nii- 4.933)2

4 = 1

we write it in the form

jS

Now

1,000 1,000

2) (mi - 5)2 + 0.134 2) (mi - 5) + 1,000 • (0.067

4=1 4=1

1,000

^ (mi - 5)2 = 2,419

1

1,000

• (0.067)2 = 4.489
1,000

0.1342 (m.- - 5) = -8.978

1

S = 2,414.51

This is to be multiplied by the number

n(N - 1) _ 1

(n - 1)M(N - M) 2497.3*

The result is

0.9668,

near enough to 1 for us to consider the hypothesis of independence of
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trials and the constant value of probability as in agreement with experi-

mental data.

Examples of Dependent Trials

6. So far we have dealt only with independent variables. But the

law of large numbers holds, under certain conditions, even in the case of

dependent variables. Leaving aside generalities, we shall show the appli-

cation of the law of large numbers to a few interesting problems involving

dependent variables.

Let us consider first a Bernoullian series consisting oi n 1 inde-

pendent trials with the same probability p for an event E, the opposite

event being denoted by F. We associate with trials 1, 2, ... n variables

0^1 ,
rr2,

. . . Xn defined as follows:

Xi — lii E occurs in trials i and i + 1,

Xi = 0 in all other cases.

The probability of = 1 evidently is when nothing is known about

the values of other variables. But if we know that Xi^i = 1, which

implies the occurrence of E in the ith trial, then the probability of == 1

is p. Thus, consecutive variables are dependent. However, Xi and Xk

are independent if |fc — > 1, as we can easily see. Since

E{Xi) = E{xl) = • 1 + (1 — 39^) . Q = p2

the expectation of the sum + xg + * *
• + will be

E(xi + 0^2 + * *
• + Xn) ==

As to the dispersion of this sum, it can be expressed as follows:

n

B„ = - p^y + 2'^Eixi -
- - pO-

i = 1 i>i

Now

(8) E{xi — = E{xX) -- 2p^E{xi) •+ = p%l —

and

(9) E(xi — P^)iXi - p2) = E{xi — p^) OII1

for; > i + 1 because then Xi and Xj are independent. But

(10) E{xi — - p2) = E{xiXi+i) ^ pi

since the probability of simultaneous events

Xi 1
,

™ 1
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is pi Taking into account (8), (9), and (10), we find

= np^q{3p + 1)
- 2p^q

and the condition

Bn ^—r —» 0 as n —^ 00

is satisfied. Hence, the law of large numbers holds for variables Xi,

^2 ,
. . . Xn. To express it in the simplest form, it suffices to notice that

the sum

Xl + X2 + '
^ + Xn

represents the number of pairs EE occurring in consecutive trials of the

Bernoullian series of n + 1 trials. Let us denote the frequency of such

pairs by m. Then, referring to the law of large numbers, we get the

following proposition:

If in n consecutive pairs of Bernoullian trials the frequency of double

successes EE is m, then the probability of the inequality

will approach 1 as near as we please^ when n becomes sufficiently large.

7 . Simple chains of trials, described in Chap. V, Sec. 1, offer a good

example of dependent trials to which the law of large numbers can be

applied. Let pi be the given probability of an event E in the first trial.

According to the definition of a simple chain, the probability of E in

any subsequent trial is a or /S according as E occurred or failed to occur

in the preceding trial. By pn we denote the probability for E to occur

in the nth trial when the results of other trials are unknown. Let

8 = a - p = 1-5

Then, according to the developments in Chap. V, Sec. 2,

Pn = p + (pi - p)8’^-^,

whence

Pi + Pi + + Pn , Pi — P 1 — S”

barring the trivial cases 5 = 1 or 5 = —I. It follows that p represents

the limit of the mean probability in n trials when n increases indefinitely,

and for that reason p may be called the mean probability in an infinite

chain of trials. When it is known that E has occurred in the fth trial, its
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probability of occurring in some subsequent jth trial is given by

== p + q = 1 - p.

In the usual way we associate with trials 1, 2, 3, . . . variables

xi, X2 , Xzj . • . so that in general

Xi = 1 when E occurs in the ith trial

Xi = 0 when E fails to occur in the ith trial.

Evidently

E{xi) = E(xf) = Pi.

In order to prove that the law of large numbers can be applied to

variables Xi, Xz^ we must have an idea of the behavior of Bn
for large n. By definition

n

= E{Xx — Pi + Xi — Pi + •
• + X„ ~ PnY = Y^E{Xi — PiY +

+ 2^E[(xi ~ Pi)(Xj — p,-)].

j >i

The first sum can easily be found. We have

E(xi - pi)2 Pi - p\ = pg + (g - p)(pi - p)a»~^ - (pi - p)262^~2

whence
n

A = ^E{xi — Piy^ npq
i = l

neglecting terms which remain bounded. As to the second sum, we
observe first that

E{Xi - pi){Xj - pi) = E{xixi) - pipj.

Again, since the probability of

XiXj — 1

is evidently pip^f we have

Eixixi) = pipf,

and

E{Xi - pi){Xi - Pi) = pijpf - pi) = pg^-^ +
+ {Pi ~ V)(<1 “ - (pi “ p)2§i+^-2^

Now, for a fixed i = 1, 2, . . . — 1, we must take the sum of these

expressions letting j run over i + 1, i + 2, . . . n. The result of this

summation is

5

pg-f - s
+ - p) (2

- p)-y
S”

ipi — pys
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Taking i = 1, 2, 3, . . . n — 1 and neglecting in the sum the terms

which remain bounded, we get

B = ^Eixi - pi)(Xi - p,-) npg—^
j >i ®

whence

Bn = A + 2B

This asymptotic equality suffices to show that

Bn ^— —^0 as n 00 .

Therefore the law of large numbers can be applied to variables Xi,

X2 ,
a? 3 ,

• . . . Since the sum

+ ^2 + * *
• + Xn — m

represents the frequency of in n trials, the law of large numbers in

this particular case can be stated as follows: For a fixed € > 0, no matter

how small, the probability of the inequality

Pi + P2
4- • •

• + Pn

n

tends to 1 as 71 00
.

The arithmetic mean

Pi + P2 + • '
• + Pn

n

itself approaches the limit p. It is easy then to express the preceding

theorem thus: The probability of the inequality

tends to 1 as n—>
This proposition is of exactly the same type as Bernoulli’s theorem,

but applies to series of dependent trials.

8. Let a simple chain of iV == ns trials be divided into n consecutive

series each consisting of s trials; also, let mi, m2, rrin he the fre-

quencies of E in each of these series. When W is a large number, the

mean probability in N trials differs little from the quantity denoted by p.

It is natural to modify the definition of the divergence coefficient given

in Sec. 3 by taking p instead of the variable mean probability in N trials.

Thus we define
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n

(lUi — spy

K- 1

Npq

In our case, the variables

Xi = (mi — spy, X2 = (m2 — sp)^, Xn — {rrin — spy

are neither identical nor independent, although the degree of dependence

is evidently very slight. These variables can also be presented in the

form

(11) {Xa — p + aJa+l — P + • • + Xa+s-1 — py

taking successively a = 1, s + 1, 2s + 1, . . . (n — l)s -[- 1.

To find the mathematical expectation of (11) it suffices to notice that

E{xi — py = E{xi - Piy + (p< — py = pg + (g — p)(Pi - p)5’~^

E{xi - p){xj - p) = E(xi - Pi){xi - Pi) + (Pi - pKPi - p)

= pg5»-® + (pi — p)(q — p)S’-'^

and then proceed exactly as in the approximate evaluation of B„ in Sec. 7.

The final result is

E(Xa — P + Xa+1 - P +
_1 + 5 2pqS

+ Xa+s-l — py =

= spq-

+

1 - 5

2pq

(1 - 3)

(1 -

.3«+i

3)'
+

(9

(g - P)(Pi - P) (l + 3)

(1 - 3)2

- P)(Pi - P)

50-1 ^

(1 - 3)2
[2s(l - 5) + 1 + 5]3“+«-h

For somewhat large s the two last terms in the right member are com-
pletely negligible; so is the third term if a ^ s -f 1. Hence, with a good
approximation.

and

E{X{) = spg^ -

EiX,) = spg^ -

2pqd

(1 - 3)2

2pqb

(1 - 3)2

+ (g - P)(Pi - p)(l + 3)

(1 - 3)2

if i > 1

jf. _ 1 -f 5 25
I

(7 - P)(Pi “ P)(l +
1-5 s(l - 5)2 Npq{l - 5)2

Again, when N is large, the last term can be dropped and as a good
approximation to D we can take

(12)

1-1-5 25

1-5 s(l - 5)2'

It can be shown that the law of large numbers holds for variables X\,

Xi, . , , Xn and therefore when n (or the number of series) is large, the
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empirical divergence coefficient is not likely to differ considerably from

D as given by the above approximate formula.

9. In order to see how far the theory of simple chains agrees with

actual experiments, the author of this book himself has done extensive

experimental work. To form a chain of trials, one can take two sets of

cards containing red and black cards in different proportions, and
proceed to draw one card at a time (returning it to the pack in which it

belongs after each drawing) according to the following rules: At the

outset one card is taken from a pack which we shall call the first set;

then, whenever a red card is drawn, the next card is taken from the first

set; but after a black card, the next one is taken from the second set.

Evidently, these rules completely determine a series of trials possessing

properties of a simple chain. In the first experiment the first pack

contained 10 red and 10 black cards, while the second pack contained 5

red and 15 black cards. Altogether, 10,000 drawings were made, and

following their natural order, they were divided into 400 series of 25

drawings each. The results are given in Table III.

Table III.—Disthibution of Red Cakds in 400 Seeies of 25 Caeds

Frequency of

red cards, m
Difference,

m — 8

Number of series

with these frequencies

1 -7 2

2 -6 4

3 -5 8

4 --4 27

5 -3 29

6 -2 54

7 -1 37

8 0 52

9 1 47

10 2 44

11 3 41

12 4 20

13 5 20

14 6 7

15 7 4

16 8 3

17 9 1

The sum of the numbers in column 3 is 400, as it should be. Taking

the sum of the products of numbers in columns 1 and 3, we get 3,323, which

is the total number of red cards. The relative frequency of red cards in

10,000 trials is, therefore,

0.3323.
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In our case

a = i, = h ^ = i

and the mean probability p in an infinite series of trials

p - - 1 . 0,3333.

Thus, the relative frequency observed differs from p only by 10"^ and

in this respect the agreement between theory and experiment is very

satisfactory. Now let us consider the theoretical divergence coefficient

for which we have the approximate expression

1 + 5 25
^ 1-5 5(1 - 5)2*

Here we must substitute 5 = 34 s = 25. The result is

D = 1.631, approximately.

To find the empirical divergence coefficient we must first evaluate the

sum
S = S(m -

extended over all 400 series. For the sake of easier calculation, we
present S thus:

8 = 2(m - 8)2 - f5;(m - 8) +
Now from Table III we get

X(m - 8)2 = 3,521; S(m - 8) = 123

whence

S = 3,483.4.

Dividing this number by 2000
^^ = 2,222.2, we find the empirical

divergence coefficient

D' - 1.568

which differs from D = 1.631 by only about 0.06, well within reasonable

limits.

10. In two other experiments two packs were used: one containing

13 red and 7 black cards, and another 7 red and 13 black cards. In

one experiment the pack with 13 red cards was considered as the first

deck, and in the other experiment it became the second deck. The
new experiments were conducted in the same way as that described in

Sec. 9, but they were both carried to 20,000 trials divided into 1,000

series of 20 trials each. In the first experiment, we have

a = -l-f, 5 = -jV, P = I
and

D = 1.796, approximately.
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while the same quantities for the second experiment are

^ ^ ^ == if? ^ == p = I

and

D == 0.556, approximately.

The results of these experiments are recorded in the following two
tables:

Table IV.

—

Concerning the First Experiment

Frequency of

red cards, m
Difference,

m — 10

Number of series

with, these frequencies

2 -8 3

3 -7 5

4 18

5 36

6 -~4 59

7 -3 93

8 -2 103

9 -1 117

10 0 1 128

11 1 121

12 2 101

13 3 93

14 4 48

15 5 39

16 6 26

17 7 7

18 8 1

19 9 1

20 10 1

Table V.

—

Concerning the Second Experiment

Frequency of

red cards, m
Diflference,

m — 10

Number of series

with these frequencies

5 -5 2

6 -4 10

7 -3 48

8 -2 112

9 -1 193

10 0 251

11 1 201

12 2 113

13 3 56

14 4 9

15 5 5
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Taking the sum of the products of numbers in columns 1 and 3, we
find

10,036 and 10,045

as the total number of red cards in the first and second experiments.

Dividing these numbers by 20,000, we have the following relative

frequencies of red cards:

0.50018 and 0.500225

extremely near to p = 0.5. From the first table we find that

S(m - 10)2 = g^924

summation being extended over all 1,000 series. Dividing this number

by 20,000 • 34 = 5,000, we find the empirical divergence coefi&cient in

the first experiment

D' = 1.785

which comes close to

D = 1.796.

Likewise, from the second table we find

i;(m - 10)2 = 2,709,

whence, dividing by 5,000,

D" - 0.5418

again close to

D = 0.5562.

Thus, all the essential circumstances foreseen theoretically, for simple

chains of trials, are in excellent agreement with our experiments.

Problems for Solution

1, From an urn originally containing a white and h black balls, n balls are drawn
in succession, each ball drawn being replaced by 1 + c(c > 0) balls of the same color

before the next drawing. If m is the frequency of white balls, show that the prob-

ability of the inequality

m a

TT ^ ^
n a -f 0

does not tend to 1 as increases indefinitely (Markoff, G. P61ya).

Indication of the Proof. If Xi = 1 or Xi = 0, according as a white or a black ball

appears in the ith drawing, we have

E{Xi) = E(xl) =
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Hence

+ 372 "f- +
na V

0 + 6/

n^ahc

(a + b)^{a + 6 + c)

-f

+

nab

(a + b)(a + b -j- c)

2.

Marbe’s Problem. A group of exactly m uninterrupted successes E or failures F
in a Bernoullian series of trials with the probability p for a success is called an
sequence.” If N is the frequency of m sequences in % trials, show that the probability

of the inequality

\N

n
< €

for a fixed e converges to 1 as n becomes infinite.

Indication of the Proof. Associate with each of the jjt = n — m 4^ i first trials

variables Xi, X2 ,
. . . Xp. assuming only two values, 0 and 1. For 1 < i < ju we set

Xi
-

1 if, beginning with the ith trial, a succession of m letters E oxF is preceded and
followed by F or E. In all other cases Xi = 0 . We set = 1 if, beginning with the

first trial, there is a succession of m letters E or F ended by F ox E; otherwise xi — 0.

Finally, = 1 if
,
beginning with the juth trial there is a succession cf m letters E ox F

preceded by F or F7, otherwise % = 0, Show that

E{xi + ajo 4- • •
• 4- Xfx) — (n — m — -4 4- 2{p^q 4- PQ^)

E(xi 4- ^^2 4- • •
* 4- Xfiy — n^{p^q^ -1- p’^q^Y +

where P remains bounded.

3.

The following interesting series of dependent trials has been suggested by S,

Bernstein: Two urns contain white and black balls. The probabilities of drawing

white balls from the first and second urns are, respectively, p and p'. The probabilities

of drawing black balls from the same urns are g = 1 — p and g' = 1 — p'. Finally,

the probability of taking a ball from the first urn at the outset of the trials is a. A
series of trials is uniquely defined by the following rule: Whenever a white ball is

drawn (and returned), the next ball is drawn from the same urn; but when a black

ball is drawn, the next ball is taken from the other urn. Let a-n be the probability

that the nth ball will be drawn from the first urn when the results of other drawings

remain unknown. Under the same assumption, let pn be the probability of the nth

ball being white. Find general expressions of an and pn^

Hint:

an+l — CLn{p 4“ p' “ 1 ) + 1 •“

whence

Also

whence

an = + (“ 2
(p 4- p' - 1)"* b

Pn = OnP 4- (1 — an)p'

Pn = p 4- p/ „ 2pp'

2 - p - p' 4'

2
(P - P'){p' 4- P

4.

When it becomes known that in the fth trial a white ball was drawn, what are

the probabilities a^f^ and of taking a ball from the first urn in t]iejth{j > i) trial

and of drawing a white ball in the same trial?
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Hint: The probability that it was the first urn from which a white ball was

drawn in the ^th trial is determined by Bayes’ formula

:

For n ^ i + 1

whence

„(.0 ^ „(.•) = ffP.
“•+1

Pi

42i = 4’^(p + p' -i) + i- p'

.r> - + (^ - + f' -
2 - p — p' \pi ^ — V — V )

for y > i + 1. Furthermore

— df^p -h (1 — df^)p’

ioxj ^ t -f 1.

6. From now on we shall assume p + p' = 1 or = g,
g' = p. Show that the

law of large numbers can be applied to variables Xi, x^, Xs, • • • which are defined in

the usual way:

Xi — 1 if a white ball is drawn in the ^th trial,

Xi == 0 if a black ball is drawn in the ith trial.

Indication of the Proof

.

Evidently £7 (xi) ~ E{xf) - pu Furthermore

n

- PiP + 2^EiXi - Pi)iXj — Pj),

E{xi ~ Pip = 2p^(l — 2pq); i> I

Eip^i — Pip = pq -]r a(l — Q:)(p — qp.

For j > t > 1

E{xi — pi){xi — Pi) - 0 if j > i + 1

E{Xi ~ pi)(xi+i - pi+i) == pq{l - ipq).

For i = 1 and j > I

E{xi — pi)(xi - p,-) = 0 if j > 2

E(xi — pi)(a:2 — P2) — ocp^ 4- (1 — — (1 — 2pq){q -f (p — q)a).

Hence

Bn ^ 4p^?(l — Spq)n

and the law of large numbers holds. It can be stated as follows: If in n trials the
frequency of white balls is m, then the probability of the inequality

m
(p2 _j_ g,2) g

n

tends to 1 as n tends to infinity for any given positive number e.

6. Let r = p^ -i- q^ he the mean probability in infinitely many trials. Find the
divergence coefficient

^ (nii — sr)2

J) ^ E— .

Nr(l - r)

when N = m trials are divided in n consecutive groups containing s trials each.
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Indication of Solution. From the foregoing formulas it follows that

E{Xa - r + Xa+i - r -j- .
• 4- Xa+s^i r)2 = 4spg(l - Zj}q) - 2pg(l -- 4pg)

if o > 1. Hence

n

E'^ (mi — sr)2 = 4:Npq{l — 3pg) — 4spg(l — 3pg) — 2(n — 1)m(1 ~ 4^9')*

1=2

Again

E(mi — sr)2 == 4:spq{l — Spq) — 2p$(3 — lOpg) + p(l — 6^ + 12q^ — 4^^) —
- a(p - g)(l - Spg)

so that finally

T) ^ ^ 1
,

(p ~ l)(p
- Q^)(l - 8p9)

1 — 2pq s(l — 2pq) ^Npq{l — 2pq)

For large N with a good approximation

D =
^ ~

__
^ 4P9

1 — 2^0^ s(l — 2pq)

7. Two sets of cards containing respectively 12 red and 4 black cards (the first

deck) and 4 red and 12 black cards (the second deck) were used in the following experi-

ment : The first card was taken from the first deck, and in the following trials, after

a red card the next one was taken from the same deck, but after a black one the next

card was taken from the other deck. Altogether 25,000 cards were drawn, and in their

natural order were divided in 1,000 series of 25 cards each. The results are recorded

in Table VI. How close is the agreement between this experiment and the theory?

Table VI.—Distribution of Red Cards in 1,000 Series of 25 Cards

Frequency of

red cards, m
Difference,

m — 16

Number of series

with these frequencies

6 -10 1

7 - 9 1

8 - 8 1

9 - 7 12

10 - 6 13

11 - 5 43

12 - 4 65

13 - 3 92

14 - 2 101

15 - 1 162

16 0 94

17 1 164

18 2 68

19 3 no
20 4 26

21 5 28

22 6 10

23 7 7

24 8 1

25 9 1
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Ans. In the present case p — p' = ^ = K* Mean probability in infinitely

many trials:

p2 + ^2 I 0.625.

Theoretical divergence coefficient: D = 1.384. Frequency of red cards: 15,696.

Relative frequency:

mn = 0.62784,

close to 0.625.

Empirical divergence coefficient: D' = 1,3845, very close to 1.384.

The probability of taking a card from the second deck is 0.25. Now, by actual

counting, it was found that in 7,500 trials a card was taken from the second deck

1,856 times. Hence, the relative frequency of this event in 7,500 trials is

HU = 0.2475,

again very close to 0.25.
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CHAPTER XII

PROBABILITIES IN CONTINUUM

1. In the preceding parts of this book, whenever we dealt with

stochastic variables, it was understood that their range of variation was
represented by a finite set of numbers. Although, for the sake of better

understanding of the subject, it was natural to begin with this simplest

case, there are many reasons why it is necessary to introduce into the

calculus of probability stochastic variables with infinitely many values.

Such variables present themselves naturally in many cases of the type of

Bujffon^s needle problem which we had occasion to mention in Chap. VI.

On the other hand, even in dealing with stochastic variables with a

finite, but very large number of values, it is often profitable for the sake

of approximate evaluations, to substitute for them fictitious variables

with infinitely many values. Among these the most important ones by
far are continuous variables.

Case op One Variable

2. Beginning with the case of a single continuous variable Xj we must
assume that its range of variation is known and represented by a given

interval (a, b), finite or infinite. The knowledge only of the range of

variation of x w'ould not enable us to consider a; as a stochastic variable;

to be able to do so, we must introduce in some form or other the considera-

tions of probability. For a continuous variable it is as unnatural to

speak of the probability of any selected single value, as it is to speak of

the dimension of a single selected point on a line. But just as we speak

of the length of a segment of a line, we may introduce the notion of the

probability that x will be confined to a given interval (c, d), part of (a, b).

In introducing this new notion of probability in any manner whatso-

ever, we must be careful not to fall into contradiction with the laws of

probability which are assumed as fundamental. To this end, if P (c, d)

is the probability for re to lie in the interval (c, d), we are led to assume

r p{c, d) ^0
2° Pia, b) = 1.

The first assumption is an expression of the fact that probability

can never be negative. The second assumption corresponds to the fact

that X certainly assumes one out of the totality of its possible values.

235
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Next, if the interval (c, d) is divided into two adjoining intervals

(c, e) and {e, d), we assume

Z°P{c,d) =Pic,e) +P(e,d)

in conformity with the theorem of total probability.

For continuous variables it is furthermore assumed: 4° for an infini-

tesimal interval (c, d), P(Cf d) is also infinitesimal.

Properties 3° and 4° show that P(c, d) is a continuous function of c

and d and that

P(c, c) == 0.

In other words, the probability that x will assume any given value is 0.

At the same time P(c, d) represents the probability of any one of the four

inequalities

c < X < d; 0 ^ X < d; c < x ^ d; c ^ x ^ d,

3 . A simple example will serve to clarify these general considerations.

A small ball of negligible dimensions is made to move on the rim of a

circular disk. It is set in motion by a vehement impulse and after many
complete revolutions, retarded by friction and the resistance of the air,

comes to rest. The variety and complexity of causes influencing the

motion of the ball make it impossible to foresee the final position of the

ball when it comes to rest and the whole phenomenon bears characteristic

features of a play of chance. The stochastic variable associated with this

chance phenomenon is the distance from a certain definite point on the

rim (origin) to the final position of the ball, counted in a definite direction,

for example, clockwise. This variable, when we consider the ball as a

mere point, may have any value between 0 and the length of the rim.

The question now arises, how to define the probability that the ball will

stop in a specified portion of the rim, or else that the variable we consider

will have a value belonging to a definite interval, part of its total range

of variation. In trying to define this probability, we must observe the

fundamental requirements set forth in Sec. 2. Besides that, we must of

necessity resort to considerations which are not mathematical in their

nature but are based partly on aprioristic and partly on experimental

grounds. Suppose we take two equal arcs on the rim. There is nothing

perceptible a priori that would make the ball stop in one arc rather than

in another. Besides, actual experiments show that the ball stops in one
arc approximately the same number of times as in another, and this

experimental knowledge together with aprioristic considerations suggests

the assumption that we must attribute equal probabilities to equal arcs,

irrespective of the position of the arcs on the rim. As soon as we agree on
this assumption or hypothesis, the problem becomes mathematical and
can easily be solved.
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Before proceeding to the solution, a remark on the meaning of zero

probability in connection with continuous variables is not out of place.

Zero probability in this case does not mean logical impossibility. We
attribute zero probability to the event that the ball will stop precisely

at the origin. However, that possibility is not altogether excluded

so far as we consider the origin and the ball as mere points. The question

lacks sense if we deal with a material ball and a material rim, no matter

how small the former and how fine the latter.

4. A stochastic variable is said to have uniform distribution of

probability if probabilities attached to two equal intervals are equal.

This means that P(c, d) depends only upon the length d — c = s oi the

interval (c, d) and accordingly can be denoted simply by P(s). Com-
bining two adjoining intervals of the respective lengths s and s' into a

single interval of length s + a', according to requirement 3^, we must
have

(1) P(s + aO =P(a) +P(a').

Suppose now that the interval (a, h) of the length b — a = I, represent-

ing the whole range of variation of x, is divided into n equal intervals

of the length l/n. The repeated application of equation (1) gives

P(!) -

But by requirement 2° P(0 = 1 and hence

Again, repeated application of (1) gives

YmA ^ m
\n / n

for any integer m < n. Now let us take any interval of length a. For an

wt
appropriate m it will contain the interval —I and be contained in the

interval 1; hence, referring to requirements 1° and 3°, we shall have

while

< p(s) < !!L±1

^7 ^ .m + 1.
—I ^ $ < L
n n
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m < s
^
m + 1

n ~ 1 n

Since P(s) and s/l are contained in the same interval of length l/n.

Pis) -
I

and this being true for an arbitrary n, no matter how large, it follows that

p(s) = f

Thus for a variable x with uniform distribution of probability, the

probability of assuming a value belonging to an interval of length s is

given by the ratio of s to the length I of the whole range of variation of z.

5. In the general case, when we cannot assume the uniform distribu-

tion of probability throughout the whole range of variation of x, we let

ourselves be guided by an analogy with a mass distributed continuously

over a line. In fact, the distribution of a mass satisfies all the require-

ments set forth for probability. In particular, the mass Am contained

in an infinitesimal interval (z, z + Az) is also infinitesimal and the mean
density

Am
Az

is generally supposed to tend, with Az converging to 0, to a limit called

‘'density at the point zN If this density p{z) is known, the mass con-

tained in any interval (c, d) is represented by an integral

J%(z)dz.

Following this analogy we adnait that the mean density of probability

Piz, z + Az)

Az

tends to a limit /(s) : density of probability at the point z when the length

of the interval A^z tends to 0. Hence, again the probability corresponding

to an interval (c, d) will be represented by the integral

Pic, d) = £^fiz)dz.

This expression satisfies all the requirements of Sec. 2 if the density of

the probability /(a) is subject to two conditions:
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(a) fiz) S 0 for all z in (a, b).

ih) £fiz)dz = 1.

The second condition implies, of course, the existence of the integral itself.

But in all cases of any importance the density is continuous, save for

discontinuities of the simplest kind which do not cause any doubts as

to the existence of the above integral.

From the general expression of P(c, d) it follows that for an infini-

tesimal interval {z, z + dz) the probability is given hj J{z)dz neglecting

infinitesimals of a higher order. For the uniform distribution of proba-

bility over an interval of length I the density is constant and = 1/I.

In other cases we cannot expect to obtain a definite expression for

density unless the variable itself is sufl&ciently characterized by addi-

tional conditions, either hypothetical or implied by the problem. Thus,

for instance, in applications of probability to problems of theoretical

physics, the physicists have succeeded in obtaining definite probability

distributions by invoking physical laws of admitted universal validity

together with some plausible hypotheses.

6. The interval containing all possible values of a stochastic variable

may be finite or infinite according to the nature of that variable. How-
ever, in all cases we may take the largest possible interval from — co to

+ oo
;
to this end it suffices to define the density outside of the originally

given interval as being = 0. Then the density will be defined for all

real values of z and will satisfy the conditions:

() f{z) ^ 0 for all z

( ) 1

Furthermore, the probability for a; to be in any interval (c, d) will be

given by

In particular, taking c = — <» and writing t instead of d,

Fit) = f J(z)dz

represents the probability that x will not exceed or will be less than t.

Considered as a function of t, F{t) is never decreasing and varies between

F(— oo) = 0 and F{+^) == 1. It is called the distribution function of

probability.” In case x has uniform distribution of probability over an

interval (a, b) its distribution function is evidently defined as follows:

F(t) =0 for t < a

Fit) = for a^t^b
^

. h — a

F(t) = 1 for t > b.

Its graph is shown in Fig, 1 on page 240.
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7. The definition of mathematical expectation can easily be extended

to continuous variables; namely, the expectation of x or the mean value

of X is defined by

E(x) = j“jf{z)dz

provided this integral exists. Similarly, the mathematical expectation

of any function (p{x) is given by

EWix)] = J_“^<p(z)f(z)dz.

Of course, the existence of the integral in the right member is presupposed

again. When this integral does not exist, it is meaningless to speak of

the mathematical expectation of <p(x).

/li mathematical expectation of the
- cc d +00 power with positive integer exponent

is called the moment of the order n or

nth moment. We shall denote it by mn so that

= j‘“j’'f{z)dz.

The dispersion D and the standard deviation of x are defined in the same
way as in Chap. IX; namely,

D = = E(x — mi)2 = (z — m\.

Often it is advisable to consider the mathematical expectation of |:r|“

where a may be any real number, ordinarily positive. This expectation

is called the ^‘absolute moment of the order a.” Its expression is

Ha = f”J[z\‘‘f{z)dz,

and it is evident that

m^k = ll%k] |^2Jfc-fl| S M2A:+1.

The mathematical expectation of the function

Qitx

where t is a real variable, is of the utmost importance. It is called the
“
characteristic function” of distribution, and is defined by

<p{t) = ^e*‘^f(z)dz.

Since /(z) ^ 0 and

J'_"°^f(z)dz = 1
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the integral defining <p{t) is always convergent and

1^(01 ^ 1 .

The distribution is completely determined by its characteristic func-

tion. Because by the Fourier theorem

= f(x)

at all points of continuity of f(x). But the left-hand member is

by the definition of <p{t) and so

/(^) =

8. To illustrate the preceding general explanations we shall now con-

sider a few examples.

Example 1 . Let a: be a variable with uniform distribution of probability over

the interval (0, 1). The density of this distribution being constant

the mean value of z is

and the second moment

Hence, the square of the

(T^ = m2 — =—
^ 12

This simple example may be used to illustrate a remark made at the beginning of this

chapter, that sometimes it is profitable to substitute for a variable with a finite but

large number of values a fictitious continuous variable. Suppose that in flipping a coin

n times, we mark heads by 1 and tails by 0, thus obtaining a sequence comprising n
units and zeros altogether, disposed in the order of trials. This sequence may be con-

sidered as successive digits in the binary representation of a fraction:

standard deviation

+ 2=
2«

contained between 0 and 1. X may be considered as a stochastic variable with 2”

values each having the probability 1 /2". The probability II(a, (3) that X will be con-

tained in the interval (a, /?), or more definitely that X will satisfy the inequalities

a < X ^ ^
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I'

is obviously obtained by multiplying the number of integers N contained in the limits

2^a < N ^ 2«/3

by 1 /2\ Now there are exactly

[2^/3] - [2^a] = 2«(^ - a) d; -1 < 6 < 1

such integers; hence

IL{ay /3) = ^ - Qj 4-

If n is even moderately large, this probability is very near to the probability

Pia, — a

that a fictitious variable x with uniform distribution over the interval (0, 1) will

assume a value in the interval (a, jS). The first two moments of the variable X are,

respectively

0 4-

1

+ 2 + • • • + 2« - 1 1 1

~ 22» "“2 2^+1

02 4 P + 2^ 4- • •
• + (2« - 1)2 1 1

-^2 - 23n ”3 3 • 22«+i

and differ little from the respective moments H and H of the fictitious continuous

variable. Without losing anything essential, we here gain considerably in sim-

plicity by substituting a fictitious continuous variable for the discontinuous variable

X.

Example 2. A thin bar can rotate freely about its middle point P, It is set in

motion and after several revolutions comes to a stop pointing toward a point X on a

^ line 1. The position of the bar is determined by an angle 0

\ formed by itself and the perpendicularPO dropped from P on 1; 6

varies between the limits ~7r/2 and ir/2 and its distribution is

0 ^ ^ supposed to be uniform. The position of X is determined by

PiQ, 2. distance OX - x from 0, this distance being positive or nega-

tive according as X is to the right or to the left of the point 0.

It is required to find the distribution of the probability of x. The relation between $

and X is

X = a tg d

a or, conversely,

= arc tg —
a

By differentiation we find the relation between d9 and dx:

adx
dd

a2 4a;2

Now, by hypothesis, the probability that <OPX will be contained between 8 and
0 4 dd iB

dB adx

Tc v 4
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And the probability that the distance of X from 0 will be contained between x and
cc + dx is the sanae. Hence, the density of probability for the variable a; is

fiz) ^

and the probability corresponding to a finite interval (c, d) is given by

For the whole range of variation of x

1 p _
TTJ_ ooCl^

as it should be. However, we cannot speak of the mean value of x or of moments of

higher order, since the integrals

^ 00

J—7,2 -I- I „ /7.2 4- 7^2

have no meaning. But the characteristic function <p(t) exists and is given by

^ r —

Example 3. One of the most important distributions (theoretically and prac-

tically) is the so-called Gaussian” or “normal” distribution. The density of this

distribution is given by

f{z) =

with three parameters K, h, a. However, only two of these parameters are inde-

pendent, since we must have

r fiz)dz =k{ = K f e-’^^'-du = = 1;
00 00 — 00 ^

and finally

To find the meaning of a and h we observe that the mean value of our variable is

/(5,) =

h T”

«»

{z — a)e + • ~hHz-a)^dz = a

X-"*
~ e-h\t-a)td,z = 0 .
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Thus a has the meaning of the mean Talue of the normally distributed variable x.

The square of the standard deviation is given by

_ a)Hz

whence

Thus for the normally distributed variable with the mean a and standard deviation cr

the density of probability is

f(z) = —

,

(TV 27r

Finally, for the variable u — x — a with the mean value 0 and the same standard

deviation, the expression of density takes the simplest form

1

/(2)
=

—

-7=e
CT'V 27r

and the distribution function of probability is represented by the integral

=—

f

t

e

The curve of density

1 -Jii
.. = Q 2cr^
y “ /—

^

<r\/ 27r

or the probability curve has a bell-shaped form as shown in the figure corresponding

to <r = 1. It has a single maximum corre-

spending to a; ~ 0 and on both sides of this—
1

— maximum it rapidly approaches the x axis.

The characteristic function of normal
distribution has a very simple form. By

definition

=— f'

we find that

cos ^xdx =

<p{t) =:= e

(a > 0)

The moments of normal distribution (with the mean = 0) can now be easily found.
From the definition of the characteristic function it follows that
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tn our case

Thus

m2i+i = 0

ma* = 1 • 3 • 5 • •
• (2A; - l)a^K

Case of Two or More Variables

9. By analogy it is easy now to extend the notion of probability to

two or more variables considered simultaneously. A pair of special

values Xj y of two stochastic variables X, Y will be represented geomet-
rically by a point with the coordinates x, y referred to a rectangular

system of axes. The domain & of all the possible values of X and Y will

be represented by a portion (finite or infinite) of a plane with a definite

boundary unless this domain coincides with the whole plane. The
probability that the point x, y should belong to an infinitesimal area

dxdy will be expressed by the product (p{Xj y) dxdy where the function

(p{Xj y) is again called the density of probability at the point x, y. The
density of probability must satisfy two requirements: it is non-negative

in the whole domain S and

/
J"

y)dxdy =

where the double integral is extended over all the domain S. The
probability for the point x, y to be located in a given domain a is then

given by the integral

J*
y)dxdy

<T

extended over cr.

If (p{xj y) is a constant in S, the distribution of probability is called

uniform. The domain S in this case must be finite and if its area is

denoted by the same letter^ then

<p{x, y) =

The probability for the point x, y to be within the domain a* will be given

by the ratio

(T

S

denoting the area of the domain o- by a again.
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10. We can always substitute the whole plane for the donaain B.

To that end it suffices to set

<p{x, y) = 0

in all points not belonging to S. We shall then have

cp(x, y) ^ 0

everywhere and

By doing so we have the advantage of stating results in a perfectly general

form without mentioning the domain S. However, in dealing with

particular problems, it is more convenient to consider only those points

which can actually represent simultaneous values of the variables.

The probability of simultaneous inequalities

a < X < h; c < y < d

according to the general definition is represented by the double integral

y)dxdy.

This corresponds to the compound probability of two events and we must
see that the fundamental theorem of compound probabilities continues

to hold. Taking c = — oo,d=:+oo the repeated integral

pm:. y)dy

represents the probability P(a, h) for the variable X (as if it were con-

sidered alone without any reference to Y) to have its value in (a, 6).

The function

/W = y)dy

represents the density of probability of X. Thus

P(a, h) = pj{z)dx.

In a similar way

P{y) = y)'^^

represents the density of the probability of Y
;
and the probability Q{c, d)

that this variable has its value in (c, d) is given by

Qic,d) = f'Fiy)dy.
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Now the double integral

XT <p{x, y)dxdy

can be written in either of the forms

where

== jy(x)dx j‘^Fi(y)dy

J/)<Xa;d2/ = j^F{y)dy
• J’yi(x)dx

Fi{y)

y)dx

J O'

/i(^) =

may be considered as densities of conditional probabilities, respectively,

for F when it is known that X has a value in (a, h) and for X when it is

known that F has value in (c, d). The preceding expressions for the

probability of the simultaneous inequalities

a < X < b, c < y < d

have the same form as the theorem of compound probability and may be

considered as its extension. The conditional probability for F to have

its value in (c, d) when it is known that X has its value in (a, b) is given by

fyi(y)dy.

Now, we define variables X and F as independent when the proba-

bility for F to be in (c, d) is not affected by the knowledge that X belongs

to (a, 5), which means that

ffFi(y)dy = £^F(y)dy

or

y)dxdy = j^F{y)dy jy{x)dx

and, since intervals (a, b) and (c, d) are arbitrary,

‘Pi^-.y) K^)- F{y)

at points of continuity. Hence, the density of probability for two

independent variables is a product of a function of x alone by a function

of y alone. Conversely, when this condition is satisfied the variables are

independent. For independent variables the probability of the simul-

taneous inequalities

a < X <h
c <y < d
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has a simple expression

£f{x)dx £F{y)dy

which is the product of the probability for X to have its value in the

interval (a, h) by the probability for Y to have its value in the interval

(c, d)y in perfect analogy with the compound probability of two inde-

pendent events.

Finally, the mathematical expectation of any function y) can be

defined by

y)) = LS. y)dxdy

provided the integral in the right member exists.

11 . It is hardly necessary to dwell at length upon the case of several

stochastic variables. A system of particular values Xi, X2, . . . Xn of

n stochastic variables Xi, X2, . . . Xn may be considered as a point in

n-dimensional space. The density of probability is a non-negative func-

tion (p{xi, X2, . . . Xv) defined in the whole space and satisfying the

condition

X2j . , , x^dxidx^ •
•

* dxn = 1 .

The probability for a point representing Xi, X2, ... Xn to be located

in a given domain cr is given by the integral

S! X2,
• • • Xn)dXidX2 * . . dXn

extended over cr. In the case of uniform distribution of probability,

<p(xiy X2y s . . Xn) is by definition a constant in a certain finite region

of space and =0 outside of that region. If V is the volume of that

region and v the volume of the domain cr, the ratio 2;/F gives the proba-

bility that a point belongs to o-.

The probability of the simultaneous inequalities

ai < rri < 61; a2 < X2 < 62; ... an <Xn <hn

is given by the integral

X2y . > . Xn)dXidX2 ... dXn

which, by introduction of the conditional probabilities as in the case of

two variables, can be put into the form of a product of n integrals in a

manner perfectly analogous to the expression of the probability of a

compound event with n components. Finally, the variables are inde-
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pendent if the density (p{xij X 2 ,
. . . Xn) is a product of n functions

depending only upon xi, . Xn, respectively, and conversely.

The expression

El^(xi, X2, • • • Xn)] =
J*_ ^ ^

‘

‘
j*^^-ip(pdXidX2 •

*
* dXn

serves to define the mathematical expectation of any function ^(xi^

X2, • • • ^n) of Xij X2j • , , Xn.

12. Since in introducing the extended idea of probability we took

care to preserve the fundamental theorems of the calculus of probability,

we may be sure that other theorems derived from them will hold for

continuous variables. In particular, theorems concerning mathematical
expectation and the fundamental lemma in Chap. X, Sec. 1, hold for

continuous variables. Upon this basis as we have seen was built the

proof of the law of large numbers. Hence, this important theorem
applies equally to continuous variables.

Geometeical Problems

13. A few geometrical problems will afford a good illustration of the

foregoing general principles.

Problem 1. A rectilinear segment AB is divided by a point C into

two parts AC = a, CB = h. Points X and Y are
, , , ,

taken at random on AC and CB, respectively. What is ^ x c y B

the probability that AX^ XY^ BY can form a triangle?

Solution. We must first agree upon the meaning of the expression

'^at random.'^ The idea suggested by this expression implies that the

^ way of selecting points X and Y gives no preference to

any point of AC and CjB, respectively. Consequently,

variables x = AX and y = BY may be assumed to have

uniform distribution of probability. The domain of the

point X, y is a rectangle OMPN with the sides OM — a,

ON = h. In order that AX, XY, BY can form a triangle

the following inequalities must be fulfilled:

m
Nin

S M
Fig. 6.

X < {a + 1) -- X ~ y) + y or x < a + h — x

y< {a + h — X — y)-\-^ or y < a -- y
— y<x + y.

These inequalities are equivalent to

X <
a + &—

,

y <
a + 6

X + y >
a A" ^“2

To interpret them geometrically through P draw a line QPR making

<i?QO = 45°. From the mid-point of QR drop the perpendiculars

PiS, VW on OX, OF. Then the preceding inequalities limit the position
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of the point x, y to the shaded area SVW, whose part TSU is contained

in the rectangle OMPN, Variables x and y are independent and have

uniform distribution. Hence, the density of probability of the pair

X, y is constant and the probability that the point x, y is in the triangle

TSU will be

Area TSU __ Ihh _ I b

Area OMPN ab 2 a

At the same time this is the probability for AX, XF, BY to form a

triangle.

Problem 2. On a line AB two points Xi, X2 are taken at random.

What is the probability that AXi, X1X2, can form a triangle?

Fig. 6. Fig. 7.

Solution. Variables AXi = Xi^ AX2 = x^ are independent and have

uniform distribution of probability. The domain of all possible positions

of the point .^i, X2 is a square with the side AJ5 == Z. Positions of this

point when AXi, X1X2, X2S form a triangle can be characterized as

follows. First, if Xi precedes X2, we have

X2 — Xi < xi A- I X2 or X2 ^ 2

Xi < X2 — xi + I
— or Xi <

I

I
I — X2 < X2 — Xi -p Xi or 272 > 2

which means that xi, X2 belongs to the triangle OPN, the definition of

which is evident if L, M, N, P are mid-points of the sides of the square

ABCD, Second, if Xi follows X2, we have

I

xi- X2 <
2 ; ^2 < 2 ^ ^2

and these inequalities define the area OLM. Since the distribution of

a;2 is uniform, the required probability is

Area OLM + Area ONP _ III _ 1

Area AHCD ll

Problem 3. A chord is drawn at random in a given circle. What is

the probability that it is greater than the side of the equilateral triangle

inscribed in that circle?
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Solution 1. The position of the chord drawn at random can be deter-

mined by its distance from the center of the circle. This distance may
vary between 0 and R, the radius of the circle. The chord is greater

than the side of the equilateral triangle inscribed in the circle if its dis-

tance from the center is less than Hence, the required probability

Solution 2. Through one end of the chord, draw a tangent AT.
The angle cp varying from 0° to 180° determines the position of the

chord. If it is greater than the side of the inscribed equilat-

eral triangle, the angle <p must lie between 60° and 120°.

Hence the answer

Fig. 8.

P2 =
120° - 60°

180°

1

3
*

The fact that we obtain two different numbers for the same probability

seems paradoxical, and the problem itself is known as ‘^Bertrand^s

paradox.^^ However, going attentively over both solutions, we discover

that we are really dealing with two different problems. In the first

solution it was assumed that the distance of the chord from the center

has uniform distribution, while in the second solution the distribution

of the angle (p w^as taken as uniform. The second solution may be con-

sidered reasonable if a thin bar or a needle can rotate freely about A
and if, being set in motion, it determines the chord AB by its ultimate

position. On the other hand, the first solution is acceptable if a circular

disk is thrown upon a board ruled with parallel lines distant from one

another by the diameter of the disk. The intersection of the disk with

one of the lines determines a chord, and the probability that it is greater

than the side of the inscribed equilateral triangle can reasonably be

assumed to be }/%.

A general remark applies to all problems of this kind. When a

certain geometrical element, such as a point or a line, is supposed to be

taken at random, it should be clearly indicated by what kind of

mechanism this is to be done. Only then the hypothetically assumed

distribution can be put to an experimental test and either confirmed

(approximately) or rejected.

14. Btiffon^s Needle Problem. A board is ruled with equidistant

parallel lines, the width of the strip between two consecutive lines being

d. A needle so fine that it can be likened to a rectilinear segment of the

length I < d is thrown on the board. What is the probability that the

needle will intersect one of the lines (naturally not more than one) ?

Solution. This is the oldest problem dealing with geometrical

probabilities. It was mentioned by Buffon, the celebrated Trench
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naturalist of the eighteenth century, in the Proceedings of the Paris

Academy of Sciences (1733) and later reproduced with its solution in

Buffon’s book “Essai d’arithm^tique morale,’^ published in 1777.

Let us determine the position of the needle by the distance OP = x oi

its middle point from the nearest line, and the acute angle <p between OP
and the needle. Variables x and <p may be considered as independent.

Furthermore, x and cp vary respectively between 0 and }idj and 0 and

t/2. As a hypothesis we assume the distribution of probability for

JC

Fig. 9. Fig. 10.

X and <p as uniform. The domain of Xj <p is & rectangle OABC with

OA == 7r/2, OC = d/2. Now, the needle intersects one of the lines if

X GOS <p

and then the point x, (p lies in the shaded area below the curve

I
X — cos <P‘

Since the distribution of Xj <p is uniform, the required probability will be

Area OAD
Area OABC

But

I r I
Area OAD

2 Jq “ 2

Area OABC = ^ • JZ A

and consequently

rd

On pages 112-113 an account was given of experiments made by several

authors in connection with Buffon's problem. They all show good agree-

ment with the theory and indirectly confirm the hypothesis assumed in

deriving the above expression for probability.

16. Extension of Btiffon’s Problem. A thin plate in the shape of a

convex polygon, of dimensions so small that it cannot intersect two of

the lines simultaneously, is thrown on a board ruled, as in Buffon'S needle
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problem. What is the probability that the boundary of the plate will

intersect one of the lines?

Solution. Suppose that the polygonal boundary has five sides.

Let these sides (and their lengths) be denoted by

a, P, 7, €.

Each of them is shorter than the distance d between two consecutive

lines. On account of convexity, a line can intersect either none or two
(and only two) sides. Accordingly, combining sides in pairs, we can
distinguish 10 mutually exclusive cases and denote their probabilities by

(al3)j (ay), (a8), (ae), (jSy), (^5), (^e), (y8), {ye), {8e),

The required probability will be given by the sum

p = (afi) + (ay) + (a8) + (ae) + (fiy) + (p8) + (/Se) + (yd) +
+• (t^) + {8e).

On the other hand, the side a can be intersected by a line in four mutually

exclusive ways; namely, together with p or y, or 8, or e. Hence, if («) is

the probability of intersection

and similarly

whence

But

ird^

(a) = (a^) + (ay) + (q:5) + (ae),

(^) = (pa) + i^y) + {IS8) + (/3e)

(t) = (7<^) + (yjS) + (75) + (7€)

(5) = {8a) + {8^) + {8y) + {8e)

(e) = {ea) + (e^) + (67) + (e5),

(0:) + (/5) + (7) + {8) + (e) = 2p.

(e)
ird’

and consequently

a + /^ + 7 + ^ + €

Trd

P
ird

where P is the perimeter of the polygonal boundary. Evidently this

result is perfectly general. Since it does not depend upon the number of

sides, by passage to the limit, it can be extended to the case of a plate

bounded by any convex curve.

16. Second Solution of Buffon’s Problem. Barbier has given another

extremely ingenious solution of Buffon’s problem and of its extension.

Let f{l) be an unknown probability that the needle will intersect a line.
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Imagine that the needle is divided into two parts V and Evidently a

line intersects the needle if, and only if, it intersects either the first or

the second part. Hence, by the theorem of total probabilities

m =/(o+/(n,
whence, as in Sec. 4, we conclude

m = Cl

where C is a constant independent of 1. The whole question is how to

determine this constant. Barbier^s ingenious idea was to let this

problem depend on the solution of another one: A polygonal line (convex

or not) is thrown upon the board; what is the mathematical expectation

of the number of points of intersection? The perimeter of the polygonal

line can be subdivided into n rectilinear parts ax, a2 ,
. . . a^ all less than

d. With these n parts we can associate n variables :ri, , Xn^ such

that

= 1 if one of the lines intersects

Xi === 0 otherwise.

The sum

5 = ^1 + ‘ •
* Xn

evidently gives the total number of the points of intersection. Hence

- E{x^) + B(x2) + • *
* + E{Xn)

and, if pi is the probability of intersection of ai with one (and only one)

line,

E{xi) = Pi.

But, according to the previous result,

Pi = Cui.

Hence, we have a perfectly general formula

jB(s) = CipLi -f- a2 “•{*** + dfi) ” CP

where P is the perimeter of the polygonal line. The result holds for any
curvilinear arc (closed or not) as can be seen by the method of limits.

This formula applied to a circle with the diameter d gives

C -wd = 2

since such a circle has always exactly two points of intersection with

the lines of the system. Thus we find that
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and

/(O = ^
as obtained before. For a closed convex line of sufficiently small dimen-
sions only two cases are possible: two intersections (probability p), or
none (probability 1 - p), whence E{s) = 2p and

or

V
P_

ird

in agreement with the result obtained in Sec. 15.

17. Laplace’s Problem. A board is covered with a set of congruent
rectangles as shown in the figure, and a thin needle is

thrown on the board. Supposing that the needle is shorter

than the smaller sides of the rectangles, find the probability

that the needle will be entirely contained in one of the

rectangles of the set.

Solution. Let AB — a, AD = 6 be the sides of the rectangle which

contains the middle point of the needle, the length of which is

I (I < aj I < h).

Taking AB and AD for coordinate axes, the position of the needle is

^
determined by two coordinates y of its middle point

and the angle (p formed by the needle with the x axis.
jr> c consider x, y, <p as three independent variables

^ with uniform distribution of probability. The domain
^ filled up with all possible points x, y, is a

Fig. 12. parallelepipedon

0 < X < a; Q <y <h] —^ ^ ^

and the distribution of probability throughout this domain is uniform.

To characterize the domain of points representing positions of the

M

J
Fig. 13. Fig. 14.

middle point of the needle when it is located entirely within ABCD we
consider the sections of that domain by planes p = constant and their
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projections on the plane xy. These projections are represented by
the shaded areas in Figs. 13 and 14 corresponding to positive and negative

(f, respectively.

In Fig. 13

<PAB = cp] AP\\BF\\CR\\DG

and AP = BE ^ BF == OR = DG = DH = |Z.

Similarly, in the second figure

<JAB = cp; AJ\\BQ\\CL\\DS

and AJ = AK BQ = CL = CM = DS =
The area of the rectangle PQRS corresponding to these two cases can be

expressed as follows:

Area PQRS — {a — I cos (p)(J)
— I sin cp) — ah -- l{b cos <;;? + a sin +

+ sin (p cos <pj

Area PQRS {a — I cos ^)(6 + Z sin (p) = ah — l(b cos tp — a sin cp) —
— P sin (p cos <p.

Without distinguishing positive and negative values of we may write

F{<p) = area PQRS ^ ah — hi cos (p -• Zalsin <p\ + |Z“|sin 2<^|.

The volume of the domain representing positions of the needle entirely

within ABCD is:

while

V = JF{(p)d(p = Tcah — 2hl — 2aZ + P
~2

V = 7ra6

is the volume of the domain

0<x<a, Q <y <1),

Hence, the required probability is:

,
2l{a + h)-V

and the complementary probability for the needle to intersect the

boundary of one of the rectangles is:
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Buffon^s problem may be considered as a limiting case when a — oo

and, indeed, by setting a = oo
^ we find that

21

in conformity with the result in Sec. 14.

These examples may suffice to give an idea of problems in geometric

probabilities. Sylvester, Crofton, and others have enriched this field

by extremely ingenious methods of evaluating, or rather of avoiding

evaluations, of very complicated multiple integrals. However, from the

standpoint of principles, these investigations, ingenious as they are,

do not contribute much to the general theory of probability.

o
Fig. 15.

Problems for Solution

1. A point X is taken at random on a rectilinear segment AB — I whose middle

point is 0. What is the probability that AX, BX, and AO can form a triangle? The
distribution of AX = a; is assumed to be uniform. Ans.

2. Two points Xi, Xa are taken at random on AB = 1 .

Assuming uniform distribution of probability, what is the mathe- A— B
matical expectation of any power n of the distance between Xi
and X2?

Jo Jo I

' p

3. Three points Xi, X2, X3 are taken at random on AB. What is the probability

that X3 lies between Xi and X'a?

Ans. assuming uniform distribution of probability.

4 . A rectilinear segment AB is divided into four equal parts

AC = CO ^ OD = DB.

Ans.

Supposing that the distribution of probability is symmetric with respect to 0, let P
be the probability that a point selected at random on AB will be between C and D.

Also, let Q be the probability that the middle point between

j—COBB points selected at random will be between C and D. Prove

1 4-
Fig. 16. that Q >

Ji

Hint: The middle point of a segment X1X2 is surely between C and D if : (i) Xi
and X2 are in CO; or (ii) Xi and X2 are in OD; or (hi) Xi and X2 are on opposite sides

of 0.

6. Two points Xi, X2 are chosen at random in a circle of radius r. Assuming

uniform distribution of probability, what is the mathematical expectation of their

distance? Ans. Denoting the required mathematical expectation by Af, we have

X
2ir r2Tr

I F(r, e, d')dede'

where

P{r, e, e') = + p’" - 2pp' cos (e - e')pp'dpdp'.

Hence, varying r by dr

dF == 2rdT -v/r^ -f-
~ 2rp cos (0 — d')pd(>
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and

d{7r^r^M) == 4:7rrdrJ^ -f*
~ 2rp cos capdpdca.

By introduction of new polar coordinates the integral in the right member can be
exhibited as

Fig. 17.
Thus

whence.

i^2r cos w

I
u^du

Jo

32
COS^ OJOW =

9

d(3rr^M) = ^^r^dr

M 128r

467r

6.

A board is covered with congruent rectangles as in Laplace's problem. A coin

the diameter of which is less than the smaller side of the rectangles is thrown on the

board. What is the probability that it will be partly in one rectangle and partly in

another? Ans. a, 6, r being respectively the sides of the rectangles and radius of the

coin, the required probability is

2r(a + 6 - 2r)

ah

7. Solve Buffon's problem when the needle is longer than the distance between

two consecutive lines. Ans. The probability for the needle to intersect at least one
line is

. 2<p(i

p * -"^(l - sm (po) H
Ta TT

where <po is determined by cos <pq — d/L

8. A board is covered with congruent triangles whose sides are a, 6, c. A needle

whose length is less than the shortest altitude of any one of these triangles is thrown
on the board. What is the probability that the needle will be contained entirely

within one of the triangles? Ans. The required probability is

I ,

+ Cc^)l^ _ (4a + 46 4- 4c ~ Zl)l

27r02 27rQ

where Aj B,C are angles opposite to sides a, b, c and Q is double the area of the triangle.

For equilateral triangles

9.

On each of the circles Oi, O2, O3, . . . with respective radii ri, rg, n, . . .

points Mij Mif Mz, • . . are taken at random. Supposing that the series

n 4- ra 4- rg + • * •

i» divergent, while the series

^ ,
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is coiiv6rg6n'tj prov6 that ths pi'obability that the Isngth of ths vector

OM = OiMi + 0S7 + OzMz + • •
• + Ojl^

will be > R tends to 0 as R —

>

w no matter how large ti is.

Indication of Solution. Let x^, x^, . . . Xn, y,, y,, . . . p. be components of
OMij OM2, . . . OMn on two rectangular axes OX, OY, Then

E(xi) = E{yi) = 0 Mj

E{x?) = E(yt) = W ^ ®
2 Pig. 18.

By Tshebysheff’s lemma (Chap. X, Sec. 1) the probabilities Q and Q' of the inequalities

\xi + a;2 +

\yi 4“ 2/2 4“

4- ajnl > t

4” 2/rt| > t4

+ i + r +

n +rl+rl+ .

P

^-4
are both less than l/tK Now, if the length OM > R then either

R
\xi 4“ 2:2 4* 4- Xn\ > -‘4

1+J. + +>i-f>:^-‘4'I2/:

Hence, the probability P for the length of OM to be > J? is less than Q 4- Q';

that is,

10. Prove that

lim
n*a» 00XX-

4': + ^2 4- 4- a;;

Xi + X2 + 4* Xn
dxidxz • • • dxn

2
3*

Hint: Considering xi^ x^^ . . . Xn as continuous stochastic variables with uniform

distribution over the interval (0, 1) prove with the help of Tshebysheff’s inequality

that the probability of

2 ^xl+xl-h • • • 4-a;| ^2
— ^ ^ ^
3 4" 4“ * * * 4” 3:n 3

for any € > 0 tends to 1 as n <»

.
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CHAPTER XIII

THE GENERAL CONCEPT OF DISTRIBUTION

!• In dealing with continuous stochastic variables we have introduced

the important concept of the function of distribution. Denoting the

density of probability by /(2j), this function was defined by

= fl

and it represents the probability of the inequality

X < t

For a variable with a finite number of values the function of distribu-

tion can be defined as the sum

F{t)

Xi<t

where pi, pa, . . . Pn are respective probabilities of all possible values

Xi, X2, Xn of the variable x. The notation xi < t is intended to

show that the summation is extended over all values of x less than t.

Again, F(t) for any real t represents the probability of the inequality

X < L

In this case F{t) is a discontinuous function, never decreasing and varying

between F{ — oo) = 0 and F(+co) = 1. Its discontinuities are located

at the points xi, X2 ,
• • Xn and are such that

Fixi + 0) — F{xi - 0) = piy

denoting, in the customary way,

Fixi + 0) = lim F{xi + €)

F{xi — 0) = lim Fixi “ e)

when 6, through positive values, converges to 0. To represent F{t)

graphically we note that

Fit) = 0 for t < Xi

Fit) = Pi for Xi< t < Xi

F(t) - Pi + Pi for Xi <t < Xs

pi 4“ p2 + • • • + Pn
260

for Xn tt
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As for the value of F{t) at the point t == Xi, it is F{xi - 0). Hence,
the graph of F(t) consists of rectilinear segments as shown in the figure

(for n = 4; Xi = -2; 0^2 = 0; 0^3 = 1; 0:4 = 3; = pa == Ps = P 4 = H)
and belongs to the so-called step lines.

Thus, in case of a continuous variable the distribution function is

given by an integral, and in case of a discontinuous variable, by a sum.
In stating theorems equally true for continuous and discontinuous

variables, it would be tedious always to distinguish these two cases.

The question naturally arises whether it is possible to represent distribu-

tion functions, moments, and ^similar quantities by using new symbols

equally applicable to continuous and discontinuous variables. In a

similar kind of investigation Stieltjes was confronted with the same

“oo “2 d t 3

Fig. 19 .

difficulties and he succeeded in overcoming them by introducing a new
kind of integrals known as Stieltjes^ integrals.

Stieltjes’ Integeals

2. Let (p(x) be a never decreasing function defined in the interval

a ^ X S h- For any particular value of the argument both the limits

(for € converging to 0 through positive values)

lim (p{xo -|“ e) = <p{xo “b 0)

lim (p{xo — e) = (p(xo — 0)

exist. Since evidently

(p{xq — 0) ^ (p{xq) ^ <p{xo + 0),

xq is a point of continuity of <p(x) if

<p(xo 0)
= (p(xo + 0).

If, however,

(p{xo — 0) < (p{xq + 0)

<p(x) is discontinuous at Xo, and the difference

mo = <p(xo + 0) — <p(xq — 0)

gives the measure of discontinuity or simply discontinuity. Since

for any number of points of discontinuity xoj xi, . . . x^ the sum of

discontinuities

Wo + + * * * + S <pQ>) — <p(ci)
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the points of discontinuity form a countable set. For there are only a

finite number of discontinuities above any given number, so that, con-

sidering the sequence

d > di> d2> — •

tending to 0, there is only a finite number of points with discontinuities

>d; also a finite number of points with discontinuities ^5 and >di,

and so on. It follows that points of discontinuity can be arranged into

a single sequence and hence form a countable set.

It may happen, however, that (p(x) may have discontinuities in any
interval, no matter how small; but at any rate there are points of con-

tinuity in any interval, If ^(a^o + «) > (pixQ — e) for all sufficiently small

€ > 0 the point a^o is called a point of increase^^ of <p(x). In particular,

any point of discontinuity is a point of increase.

3. Let f{x) be a continuous function in the interval a ^ rr g 5. By
inserting points Xi < Xz < ... < Xn this interval is subdivided into

+ 1 partial intervals. In each of these we arbitrarily select points

. . . In and form the sum
'

S = /(|o)[^(^i) T(ci)] + /(li)[^p(^ 2) “ 4- . * . -f

+ /(ln)[^(b) —

It can be proved in the same way as for ordinary integrals that when
all intervals

Xi — Xz — Xij . , . h Xn

tend to zero uniformly, the sum S tends to a definite limit. This limit,

called Stieltjes’ integral, does not depend upon the manner of subdividing

the interval (a, 6) or upon the choice of points |o, |i, . . . |n. It has

a perfectly definite value as soon as f{x) and <p{x) (together with a, h)

are given, and accordingly is denoted by

j‘y(x)d<p{x).

In case <p{x) has a continuous derivative, d<p(x) can be interpreted

as the ordinary differential; Stieltjes' integral then coincides with the

ordinary one. In other cases d(p{x) is a new S5nnbol introduced as a

reminder of the origin of Stieltjes' integral. In particular, if <p{x) is a

step function with discontinuities pi, P2 , ps, . . . at the points a; i,

Xz, Xg, . . . ,
Stieltjes' integral coincides with the sum

^Pif(xi)

which is a finite sum or an absolutely convergent infinite series according

as the set of points of discontinuity is finite or infinite.
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Stieltjes’ integrals possess many properties of ordinary integrals.

For instance, the mean-value theorem holds for them in the form:

£Kx)d<p(x) = myib) - <p{a)]

where a ^ ^ ^ 6. Also, if f{x) has a continuous derivative, we have an
analogue for the integration by parts

f(x)d<p(x) =f(b)<p(b) — f{a)<p{a) ~ j'\(x)df{x)

where df(x) means an ordinary differential and the integral in the right

member is an ordinary integral. However, some important properties

of ordinary integrals do not hold universally for Stieltjes' integrals. For
instance, considered as functions of b or a, they may have discontinuities.

In the definition of Stieltjes' integral it was assumed that a and b

were finite numbers. Stieltjes' integral over the interval — co
^
4-00 is

defined in an ordinary way as being the limit of

jy{x)d<p(x)

when a and b tend independently to — 00 and + ,
respectively. In

other words,

J f{x)d<p(x) = lim J^f(.x)d(p(x) when a-^— 00, 5—>400,

provided this limit exists. If it does not exist, the symbol

f_’‘j(x)d<p(x)

has no meaning.

The General Concept of Distribution

4. The most general t3T)e of distribution function of probability,

covering all imaginable cases, is given by a never decreasing function

F(t) defined for all real values of i and varying from F(— <x>) — 0 to

F(-l-oo) == 1. If at points of discontinuity we set

F(t)=F(t- 0),

then for any t the probability of the inequality

X < t

will be given by FCt). Also, the probability of the inequalities

^ X <. h
will be

F(h) - Fih).
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The case of continuous F(0, having a continuous derivative f{t)

(save for a finite set of points of discontinuity), corresponds to a con-

tinuous variable distributed with the density /(O, since

F{t) = p_J{x)dx.

If Fit) is a step function with a finite number of discontinuities, it charac-

terizes the distribution of probability of a variable with a finite number
of values. Finally, if Fit) is a step function with an infinite set of dis-

continuities distributed without density, it corresponds to a variable

whose values can be arranged in a sequence according to their magnitude.

These are the most important types of variables considered in the

calculus of probability, and for all of them the distribution function can

be represented by Stieltjes^ integral

F{t) = p JFix).

The mathematical expectation of any continuous function f(t) is

defined by Stieltjes^ integral

Eim) = p\mdF(t)

provided it has a meaning. In particular, moments of the order n (n

positive integer) and absolute moments of the order a (a real) are defined,

respectively, by

and we always have

Finally,

— j^J'^dFit)

fxcc == f_"ji\'"dF(t)

\mn\ ^

(fit) ~ ^e^^^dF (x)

is the characteristic function of distribution. Since the integral exists

for any real t, this function is defined for all real values t and satisfies the

inequality

Inequalities foe Moments

6. Moments of any distribution satisfy certain inequalities, which
it is important to know. They all are particular cases of the following

very general inequality due to Liapounoff

.
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Liapotmoflf’s Inequality. Let a, 6, c be three real numbers satisfying
the inequalities

0^ ^ h > c ^ 0

and fiaj Me absolute moments of orders a, 6, c for an arbitrary distribu-

tion. Then the following inequality holds:

Proof, a. Let pi, p 2 ,
. . . Pn] Xi, rc2, . . . Xn be positive numbers

and

<p{a) = pixt + p2Xt + . .
. +

Then for arbitrary real numbers Si, S2,
. . . Sj, the following inequality

holds:

(1)
^

±£3>^ g <p{si)<pis2) - •
• ^(Sy).

For p = 2 this inequality follows immediately from the known inequality

due to Cauchy:

(

n \ 2 n n

by taking in it

«1 £2

di = ^\/piX?^ hi = \/piXt^.

For p = 4 we have

/"si + 52 + S3 + fsi + S2V As + ^ r \ r \ r \ r \

n 4 / - n—2
—yH—2—

)

=

and continuing in the same manner we find in general that

5l + 52 + * + 521

)

2«

^ <pisi,)<P(S2) (p(S2m).

Let m be taken so that 2^^ > p and let us take in the last inequality

5i + 52 + • •
* + 5ff

Since

5^4-1 — 52J4.2

5i + 52 +

S2w* ““ 5
p

+ ^2«» „ + {2^ — p)s

we shall have

(pisY”" g • •
• ^^(5p)^(s)^’”'~^,
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whence

<p{sy ^ ^(si)^(s2) • • • ip{sp)i

which is inequality (1).

&. Let a ^ ^ c ^ 0 be integers. Taking p = a — c; si = S2 =
» • 0 zss Sa—b ~ Cj s<x—6-j-i

... =: ^ w^c have

gi + ^2 + • •
• + Sg^c _ (g 6)c + (6 — c)a _

a — c a -- c

and consequently, by virtue of (1),

If a = p/s, b = q/s, c = r/s are rational numbers (a ^ ^ c ^ 0),
1

it suffices to take, in (2), p, q, r instead of a, b, c, replace Xi by x% and
raise both members to the power 1/s to ascertain that (2) holds for

rational a, b, c. Finally, the passage to the limit makes it clear that (2)

holds for real a, 6, c, provided a ^ 6 S c ^ 0.

c. Let the interval 4 to JS be subdivided into partial intervals by
inserting numbers < ^2 < * •

* < tn between A and B and let

Po = F{t^) -- F{A), Pi = Fik) - F(h), . . . pn = F(B) ~ FiQ
Xo = \A\, Xi - 1^x1, . . . Xn = ii»|.

Then the three sums

n n n

^PiA, %PiXi, %PiA
0 0 0

will tend to the respective limits

fym), f/WdFit), f/WdFit)

when all differences A -- h, 1% h, ... B — tend to 0 uniformly.

Hence, passing to the limit in (2), we get

i <J‘wm)y (JTKNf(<))'";

and finally, letting A tend to — oo and JS to +

or

jug-® g
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as stated.

a c
Taking b =

^ ,
Liapounofif’s inequality becomes

whence

Ma±c ^ ^

2

a—c a—c
2

a f

Ma+c ^ AtoMo

for any two real positive numbers a and c. If k and I are two positive

integers and we take c = 2k, a = 21, then

or

since

mI+1! ^ P’ikfiil

^ mimn

|wfc+i| g ^*+2 and /i2j!
= mik, y-n = »»2 !.

Another important inequality results if we take c = 0. Then, since

Mo = 1,

or

M? ^ Mo

if a > 6 > 0. This amounts to

log M6 log /Xg

5 “ a
if a > b

which is equivalent to the statement that

log ;xa>

is an increasing function of x for positive x.

Composition of Distribution Functions

6. An important problem in the calculus of probability is to find the

distribution function of the sum of several independent variables when
distribution functions of these variables are known. It suffices to show
how this problem can be solved for the sum of two independent variables.

Let X and ^ be two independent variables with the corresponding

distribution functions F{t) and Gif). To find the distribution function

H(0 of their sum

x-^y
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is the same as to find the probability of the inequality

x + y <t

for an arbitrary real number t. Here, for the sake of simplicity and in

view of the applications we propose to consider later, we shall assume that

one, at least, of the variables rr, y has continuous distribution with

generally continuous density.

At first, let both x and y have continuous distributions so that

F{t) = p_J{x)dx-, G(t) = p_j{x)dx.

The probability of the inequality

X + y <t

according to the general principles stated in Chap. XII is expressed by
the double integral

Hit) = fff(x)g{y)dxdy

extended over the domain

X + y < t.

Now, following ordinary rules, we can reduce this double integral to a
repeated integral. To this end, for any fixed x we integrate g(y) between

limits ~ 00 and t — x, thus obtaining

f_
y(y)dy = G{t - x).

Then, after multiplying by f(x), we integrate the resulting expression

between limits — oo and + oo for x. The final result will be

H(t) = J_ Jj{t — x)f{x)dx

or, written as Stieltjes^ integral,

H{t) = fLG(i - x)dF(x).

In the second place, let a; be a discontinuous variable with different

values xi^ X2, Xz, . • • and corresponding probabilities pi, p2, pz, • ^ •

For X = Xi the inequality

x + y <t
is equivalent to

y <t — Xi
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and the probability of this inequality is G{t — x^. Since the probability

of X = Xi is pij the compound probability of the two events

X = Xi

X + y <t
will be

p^G(t - Xi).

The total probability H(t) of the inequality

X + y <i

will be expressed by the sum

H{t) = 'Lpff{t — Xi)

extended over all possible values of x. But this sum can again be written

as Stieltjes^ integral:

(1) Hit) = - x)dFix).

In both cases we obtain the same expression for E{t). Evidently

H{t) can also be defined as the mathematical expectation of G{t — x)

:

H{t) = E[G{t - x)}

taken with respect to the variable x. The important formula (1) is

known as the formula for composition of distribution functions F{t)

and(?(0-

Example. Let x and y be two normally distributed variables with means = 0

and respective standard deviations <ri and a-^. Instead of using (1), it is better to

write H{t) as a double integral

E{t) =
1

27r<ri£r2

e
2<ri2

extended over the domain
X A- y <t.

To evaluate this integral, it is natural to introduce x y == as a new variable and

find constants C, D, a, so as to have identically

Zo
J

Zo"

2

whence one easily finds

C -
2(crl+<rl)

a = <r5.

D ==

2cryM + <rl)

and

x^
+

2/2

2(rf 2<rl 2(<r]
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The Jacobian of

,
<^1

2i=a; + 2/j u = —X ?/

O'! 0*2

with respect to a;, y being

1 1

<7*2 <7*1

CTl 0-2

^2 ! ^2
0*1 4- OTg

i?(0 can be presented as the double integral

1 C C

with the domain of integration defined by a single inequality:

Hence,

or

since

z <t.

H(t) =
1

27r(<ri +

=
V2x(o-?+»-i)

2{tri2+o-22)^2^

2(<n^+<r2^)dy^ ^ ^2ir(pi + a^.

The expression obtained for H(t) leads to a remarkable conclusion:

The sum of two normally distributed variables with means = 0 and

standard deviations cri and <r2 is also a normally distributed variable with

the mean = 0 and the standard deviation a = -x/af + If means
of X and y are ai and a2, then evidently z will be normally distributed

with the mean a = Ui + «2 and the standard deviation <r = + <7'|.

Repeated application of this result leads to the following important

theorem

:

If Xij X2, . . ^ Xn are normally distributed independent variables with

means ai,a2, . . . an and standard deviations a ij<x2i . . . am then their sum

Z = Xi+ X2+ ^ + Xn

is again normally distributed with the mean a = ax + a2 + • •
• + Uw

and the standard deviation a = -x/af -f <t| + • •
* +

Finally, any linear function

w = ClXi + C2X2 + ‘ ‘
* + C

A

is normally distributed with the mean a = Ciai 4* C2a2 + • *
- +
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and the standard deviation tr = -v/cfo-! + c|o-| + •
• +

particular, the arithmetic mean

^1 + a;2 + • •
• 4~ ^71

n

of identical normally distributed variables with the mean a and the

standard deviation cr is normally distributed about the mean a and with

the standard deviation afy/n. Hence, the conclusion may be drawn
that the probability P of the inequality

is given by

Xl+ X2 + +
n

P = — r
V^Jo

«\/n
<r

e ^dt

and rapidly approaches 1 as n increases. This is a more definite form

of the law of large numbers applied to normally distributed (identical or

equal) variables.

Determination of Distribution When Its Characteristic Function
Is Given

7. One of the most important conclusions to be drawn from the

preceding considerations is that the distribution function of probability

is uniquely determined by the characteristic function. The known
proofs of this fact are rather subtle, owing to the use of conditionally

convergent integrals. However, such integrals can be avoided by resort^

ing to an ingenious device due to Liapounoff. In the general case, the

distribution function of a variable x has discontinuities. To avoid the

bad effect of these discontinuities, Liapounoff introduces a continuous

variable y that, with reasonable probability, can have values only in the

vicinity of 0. It may be surmised, therefore, that the continuous

distribution function of the mm x + y will approximately represent that

of X and, by disposing of a parameter involved in the distribution function

of y, will tend to it as a limit. To make these explanations more definite,

let y be a normally distributed variable whose distribution function is

G{t) = _A.f
_£?

e

When h is small, the probabilities of any one of the inequalities

y > f, y < —6
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will be extremely small aad even will tend to 0 when h tends to 0. Hence,

the distribution function H{t) of the sum x + y is likely to tend to

F{t) as a limit when h tends to 0. • *

To prove this in all rigor, we apply the composition formula (See» 6)

to our case. We obtain the following expression for H{t):

1 f* » -5*

—P I dF{z)
I

e h'Hiz

'VrJ-^ J-«,

or, in more convenient form

H(t) = e~^^du;

and furthermore, integrating by parts,

Hit) = -Ip f
"

Fix)dx.
h's/tJ - CO

The integral in the right member can be split into three parts

-—
7
= I e ^ ^ ^ F(x)dx d j

e ^ ^ ^ F(x)dx +Fix)dx + -Ipz r

i_ r-
V^J-.

F{x)dx,

Now, for positive T
1 r* 1

—7=
VttJt ^

Making use of this inequality, we find that

i_rv(¥) F{x)dx <
a/tt L ^

and similarly

so that

1

aAJ- »

-(Lz^y 1 .«

3
V A / F{x)dx < jre A»,

e ^Wit -]r v)du + 1 r‘ -
e — u)du + 6e v,

Q <e <1.

Given an arbitrary v > 0, the number e can be taken so small that

0 g Fit + u) - Fit Q) < c

0 Fit - Qt) - Fit - u) < c
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for 0 < < e, whence

-f
h\/TrJo

e ’‘^F(t + u)du — F(t + 0)
-J)

r>

^ Jo

V Ce-rnt - u)du -^ fV^Jo Vtt Jo

e~^^du

and

H{t)

h\^

_ F{t + 0) + Fit - 0)

e~'^^du

< <T

< <r

"v/x

On the other hand,

+ 9' (2(7 + e '0; \e'\ < 1 .

— f
aA- Jo

so that finally

e~^^du =̂ 1 ]_("•

2 V^i
J a"

2 2
'e““yM = ^ — A® 0 < 5" < 1,

H(t)
F{t + 0) + F(t - 0) < 2(7 4- 2e

and for all sufficiently small h (« being kept fixed)

Hit) - Fjt + 0) + Fjt - 0) < 4cr;

that is,

lim H (t) =
A->0

Fit + 0) + Fit - 0)

or, if i is a point of continuity,

lim Hit) = Fit).

h-*0

Now we must find another analytical representation for Hit). To
this end we consider the difference

t — x

Hit) - Hid) =^ dFix) f
'*

e-'^^du,

V’tJ-oo
h

and, to represent in a convenient way the inner integral, we make use

of the known integral

i- f"
2v^J_.



274 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. XIII

Multiplying both sides by du and integrating between —
^
and —

—

we find

- s,j.
h

1 f*

»

1
- t p 4:

tv
-dv

and

Hit) - H{0) = ^j“jiF{x)J\
7t2p2

..a

tv
-dv.

The next step is to reverse the order of integrations, an operation

which can be easily justified in this case. The result will be:

H{t) - H{0) = ^
00 i _ p-ivt

-— —dv e^-dFix)
tv J_ «

or

since

H{t) - H{D) = Jl f"

J
oo

piv

1 _ p-ivt
4
^(2;) : dv

tv

'^dFix),

Now, taking the limit of H (t) for h converging to 0, we have at any point

of continuity of F{t)

^2y2

(2) F{t) = C + s 1*.”; X
1 p—ivt

4
^(2;) : dv

tv

where the constant

^_ F(+Q) +F{^Q)
2

is determined by the condition jP(“Co) = 0. Thus, the distribution

function is completely determined by (2) at all points of continuity when
the characteristic function ip{v) is given.

Example 1. Let us apply (2) to find the distribution corresponding to the

characteristic function

<rH^

<p{v) = e 2 ,

Since in this case the integral whose limit we seek is uniformly convergent with

respect to /i, we find simply

F(f) = C 4-

= e +

sX.*"'’

if,
27rJ- 00

-dv

IT Sin tv ,^ ^2?,
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On the other hand (Chap. VII, page 128),

so that
J- « V (T Jo

Fit) =x C
1 —Jfi 1

^ 2or2dM + =
I

<rV 2tJ- m <rV 2'kJ- «,

e

vi^,
e 2cr^du,

Taking ^ == — oo, the condition F(— ^) =0 gives

and so finally

1 _Jf:
(J ^ ^ I Q 2ff^du^

<T'\J2tJ _ OO

Fit) =
-v/2^,

__W;

2a2du.

Naturally, we find a normal distribution with the standard deviation cr (compare page

270).

Example 2. What is the distribution determined by the characteristic function

^iv)
— a > 0?

A.S in the preceding example we find that

Fit) = C +

But

whence

Thus

1 f ,
iSin tv ^ ^ . 1 I sm tv ^— I ^-a\v\ = (7 - I di

2tJ-~ 00 V nrJo "0

d C sin tv f a

dtjo V Jo

1 r sin , a dx a dx 1_ I ^-av = - I
; =:= _ I

ttJo V ttJo (P" 4*

'^J— 2

-
2 nrj — »«'

Fit) - C
dx

• +
and the condition i?’(— oo) =0 gives C - }4, ao that finally

dx
Fit) -“f -

nrj—ooa^ 4- x^

Naturally we find the same distribution as that considered in Example 2, page 243.

Sometimes it is called ^'Cauchy’s distribution” with the parameter a.

Composition of Characteristic Functions

8, Having n independent variables Xij 0:2, .. . Xn whose charac-

teristic functions are <pi{t) , (P2{t)

,

. . . <pn(t)) the product

<p(t) = <piit)<p2 (t) • • * (pnit)
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is the characteristic function of their sum

s = a;i + a;2 + • • • +
In fact, the characteristic function of s is by definition

<p{{) =

Since Xi^ X 2 , . . . Xn are independent variables, the expectation of the

product

is equal to the product of the expectations of the factors, whence

(p(t) = <Pl(t)<p2(t) * * * (pnit).

This simple theorem is of great importance since it determines the

characteristic function of the sum of independent variables and indirectly

its function of distribution.

9. A few examples will illustrate the preceding remark.

Example 1. Consider n independent normally distributed variables rci, X2 f
. . . Xn

with means = 0 and standard deviations o-i, 0*

2 ,
.. . <rn. Their characteristic func-

tions are

<rkH^

<Pk{t) = e 2
j

^ = 1, 2, . . . n

and the characteristic function of their sum

will be

s ^ xi -{-x^ A-

= e

4“ Xn

" 2

where

Hence

0-2 = crj _j_ ^2 ^ . -
1
- 0.2

^

j is a normally distributed variable with the mean 0 and the standard deviation

0* =r s/cr\ 0*2 + * •
• + 0-n

as we found previously by a method involving a considerable amount of calculation.

Example 2. Independent variables xi, x^, . . . Xn have Cauchy’s distributions

with parameters ai, a 2 ,
. . . an. Since the characteristic function of Xk is

the characteristic function of the sum

will be

where

5 === a?! 4* a;2 +• • • • +• iCn

^(i) ==

a “ ai -b a2 +" • *
* 4" a».

Hencej 5 again has Cauchy^s distribution with the parameter ai 4- ^2 4- * *
* 4- Un.
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Example 3. Let Xi, X 2 j
. . . Xn be independent variables with uniform distribu-

tion of probability in the interval (0, 1). The characteristic function of any one of

them is

'•Z

I
e^^^dx — —

Jo tU

Hence, the characteristic function of their sum s will be

*pit)

The distribution function of 5 is given by

F{t) - C -h

- iV
V iU /

1 r
— lim I e ^ 1

•

27rA=o J- 00 \ ilv / iv
dv

and, since the integral again is uniformly convergent,

^2rJ_„V * /
-dv.F(t)

The evaluation of this integral presents certain difficulties. To avoid them we
notice that the integrand considered as a function of a

complex variable v is holomorphic everywhere. Hence,

we can substitute for the rectilinear path of integration

the path T as shown in Fig. 20.

Rea/ax/s

o
Fig. 20.

Now it is easy to show that integrating over the path r we have

m C
= I

0 P > 0

if
n\

ff ^ 0

The integral

r/ - iVdz

Jr\ ilz J iz

being a linear combination of integrals of the type {{g) with g 0 reduces to 0.

Similarly,

or, in explicit form.

0

{-lYctm - 1)

Referring to the above expression of F{t), we find that

m = c +^2 - ^)"
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The constant C = 0 since F{t) and the sum in the right member both vanish for

i = 0. The final expression of F{t) is, therefore:

E{t) =
1

1-2-3 • •

+
n{n — 1)

1

The series in the right member is continued as long as arguirents reniain positive.

Such is the probability that the sum

xi -P •
-\r Xn

of n independent variables, uniformly distributed throughout the interval (0, l)^ will

be less than t. The above expression is due to Laplace, who, however, obtained it in

quite a different manner.

Problems for Solution

1

.

Prove directly the inequality

2

for absolute moments.

Hint: The quadratic form in X, ju

(X|a;[2 -f fjL\x\^yd(p{x)

is definite or semidefinite. Show that the equality sign cannot hold if (p(x) has at
least two points of increase a, I3 such that a:/? is neither 0 nor ± 1.

2. Let xi, X2 j . . . Xnhen variables. Denoting the absolute moment of the order

a for Xi by jua \ and by cos the quotient

^

+ . .
. + 4’*))'+2

-

prove that

^ 4
a s' > s > 0.

Hint: Use Liapounoff’s inequality.

3 . A variable is distributed over the interval (0, -j- 00
) with a decreasing density of

probability. Show that in this case moments M 2 and M 4 satisfy the inequality

Ml g iM4 (Gauss)

and that in general

1 1

if y > jU > 0.

Indication of the Proof.

[(m + i)Mt.r ^ [(^ + i)Mvr

Show first that the existence of the integral

x”f{x)dx

in cme f(x) is a positive and decreasing function implies the existence of the limit

lim a*+i/(a) - 0; a —
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Hence, deduce that

=1, xi^+^d^(x) = (/» + 1)M^, J^“x’^^dv(x) = (j- +

where ^{x) = /(O) — f{x) and, finally, apply the inequality

[X -[X * [X
4. Using the composition formula (1), page 269, prove Laplace’s formula on

page 278 by mathematical induction.

6. Prove that the distribution function of probability for a variable whose charac-

teristic function (p{t) is given can be determined by the formula

/-(«)= c + Hm — r -

^i=o2xj_o,l +AV iv

Hint: In carrying out Liapounofi’s idea, take an auxiliary variable with the dis-

tribution

Also make use of the integral

1 r “ e~^'^^dx
- I

=

Many definite integrals can be evaluated using the relation between characteristic

and distribution functions, as the following example shows.

6. Let X be distributed over (— oo
, + 00

) with the density The character-

istic function being in this case

we find

whence

F{t) = C +
2xJ_oow(l +v^) ^ 2J-.

_
I

~ g-l«l

TrJ-ool-i-v^

an integral due to Laplace.

7. A variable is said to have Poisson’s distribution if it can have only integral

values 0, 1, 2, . . . and the probability of x - k is

the quantity a is called parameter” of distribution. If n variables have Poisson’s

distribution with parameters ui, as, . . . a», show that their sum has also Poisson’s

distribution, the parameter of which is ai + 02 + • •
• + an.
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Prove the following result:

27rJ„oo\ V )

sin tv
^ 1 ,

1—
di) = — H

2; 2 2 . 4*6 . . 2n‘
{t + + n - 2)- +

the series being continued as long as arguments remain positive.

Hint: Consider the sum of n imiformly distributed variables in the interval

(— ly 4-1) and express its distribution function in two different ways.

9.

Establish the expression for the mathematical expectation of the absolute

value of the sum of n uniformly distributed variables in the interval ( — K, +M)*
lim.

E\xi 4 372 4 4- =
2 -d-a (2n 4 2) 1

(n - 4

the series being continued as long as the arguments remain positive.

Hint: Apply Laplace’s formula on page 278, conveniently modified, to express the

expectation of :ci 4- 3:2 + * * • -+ 3;» and that of |3;i 4 3:2 4- * •
• 4 3:n|.

10.

Show that under the same conditions as in Prob. 9

, , , ,
r / sin A” ^sin t — t cos t ,+ 4.

+ . .

.

+ 4.1 . _j_ j
—_

—

Hint: Prove and use the following formula

lim
00

1 — iwx
dx —

—Trityl.

11.

Let Xi and 0:2 be two identical and normally distributed variables with the

mean = 0 and the standard deviation cr. If x is defined as the greater of the values

|37i|, |a72|, that is,

X — max. (|a;i|, |a;2 |)

find the mean value of x as well as that of x^. Ans.

12. Let

X = min. (|a;il, \x2 \y
. . . \xn\)

where x^, ^ . Xn are identical normally distributed variables with the mean = 0
and the standard deviation <r. Find the mean value of x. Ans, Setting for brevity

^r-
cr\/xc/0

ill

== e({),

we have

E(x) =^"{1 - eit)]”dt.
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In particular for n = 2

For large n asymptotically

EQc) = -^(\/2 - 1).

“V TT

Eix)
cr'x/7r/2

n + 1

13. A variable with, the mean = 0 and the standard deviation = 1 is called a

^'reduced variable.” By changing the origin and the unit of measurement any
variable can be made reduced. For, if x has the mean a and the standard deviation o-

the variable

u
X — a

<r

is reduced. The distribution function of the reduced variable u can be called the

^'reduced law of distribution.”

As we have seen, variables xi and X2 with normal distribution have the same
reduced law of distribution, as does their sum. The question may be raised : Is the

normal law of distribution a unique law possessing this property? (G. P61ya.)

Solution. Let xi^ xi be two variables for which the second moment of the distri-

bution exists, so that we can speak of their means and standard deviations. Let xi

have its mean ai and its standard deviation cn; likewise, let and 0*2 be the mean and

the standard deviation of X2 . Three reduced variables

— Cll ^2 — 0>2 Xi X2 — — CC2

Ui == > U2 = » Uz ==
.

(T'l 0’2
'Y/ct^ _j_

have by hypothesis the same law of distribution. Hence, they have the same charac-

teristic function <p(t) whence we can draw the conclusion that the characteristic

functions of xi, X 2 , xi -f X2 are, respectively,

<pi(t) == <p2 (t) = e^^°'2<p{a-2t); <pz{t) = 4-O-20*

Since

we must have for an arbitrary real t

or

(1 )

where

<p{(Xt)<p{^t) = <p{t)

+<
=

Vo’! + o-|

= 1 .

Since (1) holds for every real t, we shall have

and

(2) (p{t) - <p(aH)<p(ot^t)^<p(fiH).

Applying (1) again to each of these factors in the right member of (2), we find that

(3)
cp{t) =
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and proceeding in the same way, we arrive at the general formula

(4) <p{t) =

where poy pu • • • pn are coefficients in the expansion

(1 + 2:)” = 2>o 4* + • • * H- P.nZ^-

The arguments

V(i = aH, Vi — a"

tend uniformly to 0 since qj < 1, /S < 1. The quotient

1-1 f” r— = - I iW(«)
I (1 - x)ei'^^dx

J-« Jo

gent integ

=4:
is represented by a uniformly convergent integral; hence

tHF{t) - --

or

where

At the same time

where again

<p{v) - 1 + [-1 + e(v)]v^

e(v) —)• 0 as t; -» 0.

log (p(v) — [-“i + 5{v)]v^ (principal branch of log)

5(C —^0 as t; 0.

Now, taking logarithms of both members of (4)

log (pit) = —it^ipooi^^ H- pia^^ + * * * + Pn^^^) 4 = —'1^^ 4*

where

Q ~ t^[pQ5{vQ)a^^ 4 pi8{vi)ot^^~^B^ Pn8(Vn)^^^].

Given e > 0, we can take n so large that

whence
< €,* i = 0, 1, .

\Q\ < dK
Thus

llog <p{t) 4-

and since e can be taken arbitrarily small,

log (Pit) + ^ 0

n

or

p(t) = e-i‘\

wMoh shows that the normal law is the only one with the required properties, among
all laws with finite second moments.
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CHAPTER XIV

FUNDAMENTAL LIMIT THEOREMS

1. Bernoulli’s theorem, as we have seen in Chap. VII, follows from a

more general one known as Laplace’s limit theorem. In terms already

familiar to us, this theorem can be stated as follows: Let an event E
occur m times in a series of n independent trials with constant probability

p. As n becomes infinite, the distribution function of the quotient

m — np

'\/npq

approaches

— r e-^^'^du

V^J-oo
as a limit; or, to state it in a less precise form, the distribution of the

above quotient tends to normal.

Just as Bernoulli’s theorem itself is a very particular case of the general

law of large numbers, so Laplace’s limit theorem is a special case of

another extremely general theorem, the discovery of which by Laplace

may be considered as the crowning achievement of his persistent efforts,

extending over a period of more than twenty years, to find the approxi-

mate distribution of probability for sums consisting of a great many
independent components with almost arbitrary distributions. The
result at which Laplace finally arrived is as astonishing as it is simple:

if xi, 0: 2 ,
.. . Xn iE(Xi) = 0, f = 1, 2, . . . n) are independent variables

(subject to some very mild limitations not stated, however, by Laplace)

and Bn is the dispersion of their sum, then for large n the distribution of

the quotient

Xi + X2 + ^
^ + Xn

VK
is nearly normal. To put it more precisely, the distribution function

of this quotient tends to the limit

— C e~^^^du

as n becomes infinite.

Laplace’s attempt to prove this important proposition does not stand

the test of modern rigor and, besides, cannot easily be made rigorous.

283
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The same is true of the attempts made by later investigators, notably

Poisson, Cauchy, and many others. Only after a lapse of many years

were truly rigorous proofs of Laplace's theorem given. This important

achievement is the result of the work of three great Russian mathemati-

cians: Tshebysheff (1887), Markoff (1898), and Liapounoff (1900-1901).

An account of Tshebysheff's and Markoff's ingenious investigations is

given in Appendix II. Here we shall follow Liapounoff; for his method

of proof has the advantage of simplicity even compared with more recent

proofs, of which that given by J. W. Lindeberg deserves special mention.^

2. Before going into details of analysis, we shall state the limit theo-

rem in a very general form due to Liapounoff.

Laplace-Liapounoff’s Theorem. Let rri, x^, . ^ . Xn be independent

variables with their means = 0, possessing absolute moments of the order

2 -f 5 {where 8 is some number > 0)

:

//<2)

J/, denoting by Bn the dispersion of the sum xi + 0:2 +
quotient

0)n

tends to 0 as n ^ ,
the probability of the inequality

+ :r2 4~ • • * Xn ^ ^VK
tends uniformly to the limit

e'^^^du.

+ Xn, the

It is natural that the complete proof of a theorem of such character

cannot be too short, and to make the proof clearer it is advisable to

divide it into logically separated parts.

3. The Fundamental Lemma. Let Sn be a variable, depending on an
integer n, with the mean = 0 and the standard deviation == 1. If its

characteristic function

<pn{v) = i7(e"^*")

tends to

6 2

1 Lindeberg^s proof, as well as later proofs by P. Levy and others, make use of an
ingenious artifice due to Liapounoff. Lindeberg explicitly acknowledges his indebted-

ness to Liapounoff, while Levy and other French writers fail to give due credit to the

great Russian mathematician.
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uniformly in any given finite interval {
— I, 1), then the distribution function

Fnit) of Sn tends uniformly {in the domain of all real values of t) to the limit

—^ r e-^'^^du.

Proof, a. Together with the variable Sn, whose distribution function

is Fn(i)j Liapounoff considers another variable

Tn ~ Sn "1” y

where ?/ is a normally distributed variable with the distribution function

1 —

—

G{y) = -—^ I e ^^dx.

Denoting the distribution function of by Hn{t)j we have (Chap. XIII,

Sec. 7)

e—

a

H„{t)
=~('°

dF„(x) f
^

V ttJ - « J — 00

e-'^^du.

On account of the inequality

1 r*" 1
-^7= e-^^du g T ^ 0
x/ttJt ^

we have:

For t — X < ^:

For t — X > 0:

r~h 0f V
= j

e-^^du = -H-e
V A /

; 0 < ^ 1.

rJ - oo A

r *
e-<^^du =1 ^ f e-'^^du = 1 - .

J — 00 'y' A

0 < e" ^ 1.

Hence, introducing these expressions into (1),

EniS) = f ^ r e“(^) dF„(x)dFn{x) — e C ) dF„{x)

where again 0 < < 1; 0 < 0i < 1. This leads to the folio-wing

inequality

:

X
eo /i a;\ 3

e~y^)dFnix).
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and consequently

|H.(0 - Pnit)\ < e 4 e~^^^ipn{v)dv

(2) e ^ [<pn(v) - e ^dv +

4-1 e ^

Here we split the first integral into three Ji, J2 , Jz, taken respectively

between limits — 00
,
— Z; --1^ 1; I

j

4- and denote the second integral

by Ji. Since \(Pn{v) — e ^ 2, we shall have

-r^\J 1 + Js] <
4v‘?r

e ^ dv <
2 e ^

’x/tt

because

e~'^^du <

for positive x. Also

e ^dv

To estimate J2 we shall denote by en{l) the maximum of \<Pniv) — e in

the interval ^ v SI- Then

^
I r I ^ ^€71 (Z)

4^,
6 ^ dv (J) •

Finally, taking into account (2), (3), (4), and (5), we find

(hlY

(6) - F„m < ^
b. Expression (1) of Hn{t) can be transformed in a manner similar

to that employed in Chap. XIII, Sec. 7, if we first write

t—x i~x

f
^

e-’^^du = J + _L r * e-n^du.

V’tJ- « ^ VTrJo
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Thus we get

^n{t) = - + — e *
2 27rJ-oo

or

Hn(t)

Now

=
5 +-rTtjo

t?2 .

---sal'* +

,

V 2Tr

L f"
2zrJ-.

. ??2

tv
-{e 2 — (p^{v))dv.

^Jo 2^ a-Jo

^2^2 1)2 • ,—
1—o-sm tv
4 2

c?z; <
/72 f «

^ ve ^dv
47rJo 4:7r

since

A2»2

and consequently

(7) k(i) - J
- - f

1

I' irjo

0 < 1

00 ?)2 .

“o-sm tv
g 2_

<

<
At ^ 2xJ- „

00 fe22,2|

M
To find an upper bound of the integral in the right member, we split

it into five integrals Ii, 1 2, Iz, I a, 1 5 taken respectively between limits

— 00
,
— Z; —Z, —X; —X, X; X, Z; Z, + 00 . To estimate J 3, we notice

that

Wn{v) xHFnix) =

< ^= 2

and

Hence

(8)

\q^n{v) - e 2
] g

To estimate J2 + ^ 4,
we use the inequality \iPn{v) — e ^ €n(Z) and we

get

6Lf, + 7.1 S
-rdv

^
6„(0

(9)
^

Finally, dealing with h and Is, we use the obvious inequality

\<Pn{.v) e 21 g 2
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and we obtain

(10) 2t'
+ U -f'

< ifU
V TT {hlf

Taking into account (7), (8), (9), and (10), the following inequality

results:

H„{t)
1 _ 1 r
2 irjo

yap

^ hy
,

, e„(/)
,

4e 4

^ + 27r ^ (hir
'

In it, since X is still at our disposal, we can take

X = e„(l)ih-K

The inequality thus obtained when combined with (6) gives (a = kl)

(11)
J TTjo V

dv\ <4lJ+ + +

+ (l)^ + 5««(0.

Here a and I are arbitrary positive numbers. We dispose of them in

the following manner: Given an arbitrary positive number e, we take a
so large as to have

4e ^
2 6^1

TT 'y^ a 3^

and after that we select I large enough to make

^ 1

V8J
^ ^ 3"'

Finally, since for a fixed Z, €„(Z) by hyoothesis, tends to 0 when n oo,

there exists a number no such that

for all n > no. The inequality (11) then shows that

sin tv
dv < €

for n > no and this means that

liHT F„(f) = i + i
f
"e-r = 1 f'

n—> 00 Q V -y/27r«/ ~ °®V



Sec. 4] FUNDAMENTAL LIMIT THEOREMS 289

uniformly in t because the number no, as clearly follows from the pre-

ceding analysis, depends upon e only and not upon t.

Remark 1. Without changing anything in the proof, we can state

the fundamental lemma in a slightly generalized form as follows: If tn

tends to the limit t, the probability of the inequality

Sn tn

tends to

-4= r
V2tJ_,

Remark 2. The fundamental lemma, although not explicitly stated

by Liapounoff, is implicitly contained in his proof. More general

propositions of the same nature have been published by P61ya and Levy.

The very elegant result due to the latter can be stated as follows: If

the characteristic function of the variable Sn tends to the characteristicfunction

4>{t) = f

^

of a fixed distribution uniformly in any finite interval^ then

lim Fn(t) = F(t)

at any point of continuity of F{t),

The above proof, corresponding to the particular case

can be used, almost without any changes, in proving the general proposi-

tion of Levy.

4. Proof of Liapounoff’s Theorem, a. If Liapounoff’s condition

M2+5 + ^2+5 + • '
• +

^ Q

is satisfied for a certain 5 > 0, it will be satisfied for all smaller 5.

Let fi{t) be the distribution function of Xi{i = 1, 2, . . . n). The
sum

f{t) — flit) +/2(0 -f
* *

* +/n(^)

being a nondecreasing function of i, the following inequality holds

(Chap. XIII, Sec. 5):
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provided a > b > c > 0. We take here

(X=:2-{-5, 6 = 2-1- c = 2

supposing 0 < 5' < 5. Then

f_\wdm = B,

1 1

But this inequality is equivalent to

and it shows that

if

5
'

1

provided 0 < $' < 5. Hence, in the proof we can assume that the funda-

mental condition is satisfied for some positive 5^1.
6. Liapounoff^s inequality (Chap. XIII, Sec. 5) with c = 0, 6 = 2,

a = 2 + 8 when applied to Xi gives

Hence,

(12)

g h = Eixl),

and, since it is assumed that con 0, all the quotients

= hi ft = 1 2
Bn 6x + 62 + • •

• + 6n
^ *

will converge to 0 unifornoly as n oo

.

. . n)
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c. The following formula can easily be obtained by means of integra-

tion by parts:

— 1 ix — ~ ^ __ _ t)dt.
A Jo

If X is real and in absolute value >2, we have

ra;2 - l)(l - t)dt ^ < ja-p+j

2**

since

|eixi _ i| ^ 2.

If [a:! ^ 2, we can use the inequality

le«< _ i| g 2

and find

Thus, for every real x

t 5 2!fL<

1

- 3~W ^ ~¥'

^2 lr|2+5!-= l + + i^ISl.

Substituting here

rr =
VBn

and taking the mathematical expectation of both members, we have

(13) vk{t) = = 1 - \e,\ ^ 1 .

mXjji 1 _i—
2^5„ 2

Furthermore, since

1 — a: = e“* — |a:2; a; > 0; 0 < ^ < 1,

we can write

If co„|ip+^ < 1, we shall have, by virtue of (12),

< 1
jDn
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and consequently

\2bJ \2bJ \2B.

1+1

<
2^ 2

.,(k)

This inequality, together with (13) and (14), leads to the following

expression of <pk{t)

;

hk

(15) <Ph(f) == ^ (1 + 0“^)

where

(16) Ifffci <
8 i+-

5: 2

d. The characteristic function of the variable

rri + a;2 + * ‘
* 4"

Sn —
VbI

IS

<p(t) — (pi{t)(p2(t) •
’ • (Pn(t)

because Xi, , Xn are independent variables. Hence, by (15)

<p(t) = e'"^^^(l + (yi)(l + 0'2)
* *

‘ (1 4” iTn)

<(H-H)(1 + H) • •
• (l+ W)-l<eI-^l+N+-*.+l«rni_l

and

(17) i^(o
- --

1

taking into account inequalities (16). Inequality (17) holds if

< 1.

Suppose, now, that t is confined to an arbitrary finite interval

Because con, by hypothesis, tends to 0, the difference

«3<o« z
2+^

will tend to 0 as n —> co . In connection with (17) this shows that

<p(f)

uniformly in any finite interval. It suffices now to invoke the funda-

mental lemma to complete the proof of Liapounoff ^s theorem.

6. Particular Cases. This theorem is extremely general and it is

hardly possible to find cases of any practical importance to which it
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could not be applied. Two particularly significant cases deserve special

mention.

First Case. Let us suppose that variables Xi, 0^2 ,
.. . Xn are bounded,

so that any possible value of any one of them is absolutely less than a

constant C. Evidently

and hence

^ C^Eixf) = C^bi

COn ^

It suffices to assume that

Sn = &1 + &2 + ‘ *
* +

tends to infinity to be sure that con 0. Hence, dealing with bounded
independent variables, the condition for the validity of the limit theorem

is

jBn —> CO as n 00
,

which is equivalent to the statement that the series

61 + &2 + &3 4" * * *

is divergent.

Poisson’s series of trials affords a good illustration of this case. In

the usual way, we attach to each of the trials a variable which assumes

two values, 1 and 0, according as an event E occurs or fails in that trial.

Let Pi and = 1 — pi be the respective probabilities of the occurrence

and failure of E in the ^th trial. The variable Zi attached to this trial

is defined by

Zi = 1 if E occurs,

Zi ^ 0 if E fails.

Noticing that

E(.Zi) = Pi,

we introduce new variables

Xi = Zi — Pi (i = 1, 2, . , . n)

with the mean 0, whose sum is given by

m — np

where m is the number of occurrences of E in n trials and p the mean
probability

= Pi + + * '
* +

^ n
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In oixr case

and

= Viqi

Hence, we can formulate the following theorem:

Theorem. The probability of the inequality

m — np < t's/Bn

tends uniformly to the limit

__!f!

e 2du
00

as CO
,
provided the series

Y/Piii
1

is divergent. At the same time the probability of the inequalities

ti\/Wn < m — np < h's/Rn

tends uniformly (in /i, tz) to the limit

1—
7=r I e 2du.

V^Jh
Second Case. Let Zij Zzj , . , Zn be identical variables with the

common mean a and dispersion b. Supposing that for some positive 8

E\zi — a|2+^ = c

exists, we have

nc c _i= = . 2j

(nby^

and hence 0 as n —» co . The limit theorem applied to this case

can be stated as follows:

The probability of the inequality

2:1 + ^^2 + * *
’ + Zn — na < t's/^

e ^dUj

tends uniformly to
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provided

E\zi —

exists for some positive h. As a corollary we have: The probability of the

inequalities

a < \n
fends to

. /5 ^ ^ 1 +^2 + • * • -{• Zn

\n n

t

e ^du.

This proposition is regarded as justification of the ordinary procedure

of taking a mean of several observed measurements of the same quantity,

made under the same conditions, to approximate its “true value.”

Barring systematical errors which should be eliminated by a careful

study of the tools used for measurements, the true value of the unknown
quantity is regarded as coinciding with the expectation of a set of poten-

tially possible values each having a certain probability of materializing

in actual measurement. Since for comparatively small t the above

integral comes very near to 1 and

for large n becomes as small as we please, the probability of the mean of a

very large number of observations deviating very little from the true

value of the quantity to be measured, will be close to 1 and herein lies

the justification of the rule of mean mentioned above.

Estimation of the Eeror Term.

6. The limit theorem is a proposition of an essentially asymptotic

character. It states merely that the distribution function Fnit) of the

variable

+ X2 + ‘
‘ + Xn

VK
approaches the limit

1 rt _h!

— I
e ^du

v^j- »

as n becomes infinite when a certain condition is fulfilled. For practical

purposes it is very important to estimate the error committed by replac-

ing Fnit) by its limit when n is a finite but very large number. In his

original paper Liapounoff had this important problem in his mind and
for that reason entered into more detailed elaboration of various parts
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of his proof than was strictly necessary to establish an asymptotic

theorem.

We do not intend to reproduce here this part of Liapounoff^s investiga-

tion; it suffices to indicate the final result. Assuming the existence of

absolute moments of the third order E\xi\^; ^ = 1, 2, . . . n, we shall

suppose n so large that

=

Then, setting

we shall have

__ + ^ 1
^

20
'

e~^^^du + R,Fr.it)

|i?| < ^COn

JsJ-.

('‘’® k)’ + i-i] + “5 ss

+

Although this limit for the error term is probably too high, it seems

to be the best available. However, it is greatly desirable to have a more

genuine estimation of R,

7. Hypothesis of Elementary Errors. It is considered as an experi-

mental fact that accidental errors of observations (or measurements)

follow closely the law of normal distribution. In the sphere of biology,

similar phenomena have been observed as to the size of the bodies and

various organs of living organisms. What can be suggested as an

explanation of these observed facts? In regard to errors of observations,

Laplace proposed a hypothesis which may sound plausible. He considers

the total error as a sum of numerous very small elementary errors due

to independent causes.

It can hardly be doubted that various independent or nearly inde-

pendent causes contribute to the total error. In astronomical observa-

tions, for instance, slight changes in the temperature, irregular currents

of air, vibrations of buildings, and even the state of the organs of percep-

tion of an observer may be considered as but a small part of such causes.

One can easily understand that the growth of the organs of living organ-

isms is also dependent on many factors of accidental character which

independently tend to increase or decrease the size of the organs. If,

on the ground of such evidence, we accept Laplace^s hypothesis, we can

try the explanation of the normal law of distribution on the basis of the

general theorems established above.

Suppose that elementary errors do not exceed in absolute value a

certain number Z, very small compared with the standard deviation a

of their sum. The quantity denoted by Wn in the preceding section will

be less than the ratio l/c and hence will be a small number; and the same
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will be true of the error term R, Hence, the distribution of the total

error will be nearly normal.

Laplace^s explanation of the observed prevalence of normal distribu-

tions may be accepted as plausible, at least. But the question may be

raised whether elementary errors are small enough and numerous enough

to make the difference between the true distribution function of the total

error and that of a normal distribution small. Besides, Laplace’s

hypothesis is based on the principle of superposition of small effects and

thus introduces another assumption of an arbitrary character.

Finally, the experimental data quoted in support of the normal dis-

tribution of errors of observations and biological measurements are not

numerous enough for one to place full confidence in them. Hence, the

widely accepted statistical theories based on the normal law of distribu-

tion cannot be fully relied on and may be considered merely as substitutes

for more accurate knowledge which we do not yet possess in dealing with

problems of vital importance in the sphere of human activities.

Limit Theorems for Dependent Variables

8. The fundamental limit theorem can be extended to sums of depend-

ent variables as, under special assumptions, was shown first by Markoff

and later by S. Bernstein, whose work may be considered an outstanding

recent contribution to the theory of probability. However, the condi-

tions for the validity of the theorems established by Bernstein are rather

complicated, and the whole subject seems to lack ultimate simplicity.

For that reason we confine ourselves here to a few special cases.

Example 1. Let us consider a simple chain in which probabilities for an event E
to occur in any trial are p' and p", respectively, according as E occurred or failed in

the preceding trial. The probability for E to occur at the nth trial when the results of

other trials are unknown is

Prt = p -f (pi
”

where pi is the initial probability, 5 = p' — p" and

‘Ihe mean probability for n trials is given by

Pn = p +
Pi ~ p 1 — 5^

n 1—5

so that p may be considered as the mean probability in infinitely many trials.

In the usual way, to trials 1, 2, 3, . . . we attach variables xi, X2 ,
xs, . . . so that

in general

= 1 — Pi or Xi = —pi
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according as E occurs or fails in the ith trial. If m is the number of occurrences of

E mn trials, the sum

iTi + X2 -h • • -p Xn

of dependent variables represents

Evidently

m — nfn.

E{m — np-n) = 0

and, as we have seen in Chap. XI, Sec. 7,

Bn = E{m — nprl)^
1+5

that is, the ratio of Bn. n'pq
1 +5
1-5 tends to 1 as becomes Infinite.

In order to find an appropriate expression of the characteristic function of the

quotient

m — npn

\/¥n

we shall endeavor first to find the generating function 03n{t) for probabilities

B — 0, 1, 2, , , . Kt)

to have exactly m occurrences of in n trials. Let Am,n be the probability of m
occurrences when the whole series ends with E and similarly Bm.n the probability of

m occurrences when this series ends with F, the event opposite to E. The following

relations follow immediately from the definition of a chain

(18)

Let

Afn,n+1 — Ani-~l,nP^ + Bm.—l,nP"

Bm,nJrl = Am,nq' + Bm,nq".

00 00

9n(<) = AmJ’”', 4>n(t) = ^
w=0 m = 0

be the generating function of Am,n and Bm,n. From relations (18) it follows that

dn+lit) = p'tBnit) + P^'trpn{t)

- q'Bnit) + $'Vn(0.

These relations established forn ^ 1 will hold even for w = 0 if we define 0o(O and
’Ao(0 by

V'Bq + p'Vo == Pi

q'do + g'Vo == 1 — pi

whence

5o + ^0 == 1.

From (19) one can easily conclude that both Bn{t) and satisfy the same equa-
tion in finite differences of the second order

5n+2 - (p'< + g")5«+i + Udn = 0
““ ip't + == 0.
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Evidently

hence
Am,n "t” Hjj]

can(t) = 0n(t) + ^n(t)

satisfies the equation

(20) Oyn+2 ““ (p't + 4" StoJn == 0

and is completely determined by it and the initial conditions

Since

6)0 = 1
, m = Qi -h pii^

p' == p + q5, g" = + p5

the characteristic equation corresponding to (20) can be written

(r - l)(r - 5 ) - (t - l)[(p + g5)f - 5]

and for small ^ — 1 its roots can be expanded into power series

= 1 H" Ci (^
—

• 1 ) + 02(1 — 1 )^

^2 = 5+ di(t — 1) + d2 {t 1)2 ^ ^

The general expression of c^nit) will be

- Atl + - Ar? +

where to satisfy the initial conditions we must take

. .^2 — 0.1 — Pit _ —^1 “h ^1 -f- PitA = ; jd

u -ti ^2 - ri

Having found 02n{t), the characteristic function of

m — npn
Sn “ /

V Bn
will be given by

vi / . -—npn~—z. (
t—p=.

<pn(p) == e ^'®”6)n\e

To study the asymptotic behavior of (pn(v) when v is confined to a finite fixed

interval ^ v ^ I, we notice that then

V

will be well within the convergence region of the series we are going to consider now.

By means of Lagrange’s series or otherwise, we find the following expansion of log ^1 in

power series of i — 1

convergent for sufficiently small values of ^ ~ 1. By setting i we obtain another

power series in u

, pq 1 A- S
log ri = ptM - — + . . .
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convergent for suiBciently small u. Hence

. 1+ 5 w®, ,/\npm— npft—r -r+ nu^g{u}

f = e
1-5 2

— +npS7^ — nu^giu)
= e

^

where g{u) is a bounded function of % u being contained in a certain interval (—r, r).

By substituting

here, we easily conclude that

tends uniformly to the limit

in the interval --I ^ v ^ I while

remains there uniformly bounded. Since, as can easily be seen, A and B can be

represented by power series

A = 1 +“ diU 4“ (12^^ -j- . . .

B = ^aiu — a2U^ — . . .

A tends uniformly to 1 and B tends uniformly to 0. Hence, finally, cpn(v) in any fixed

interval tends uniformly to e ^

.

It suffices to apply the fundamental
lemma to conclude that the probability of the inequality

"\/~Bn

-npn-~=

“2

—npn—

7Yl> — Th'Pfi tn'\^Bn

tends uniformly to the limit

U2

1 n—
7=: I

e ^du
oo

if tn tends to t.

j _j_ ^
Since Bn is asymptotic to npq-- and fn differs from p by a quantity of the order

1 — o

1/n, the inequality

can be written in the form

m — np <t
/l H- 5

PX XXpn Bn

with tn tending to t, whence, using the above established result, the following theorem
due to Markoff can be derived:
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Theorem. For a simple chain the prohability of the inequalities

/i + b ^ j /i + 5— np < Ujj-^npq

tends to the limit

1 -H!
—7= I e ^du
V 27rJfx

as n 00

.

Example 2. Considering an indefinite series of Bernoullian trials with the prob-

ability p for an event A to occur, we can regard pairs of consecutive trials 1 and 2,

2 and 3, 3 and 4, and so on, as forming a new series of trials which may produce an
event E consisting of two successive occurrences oi A{E = AA) or an event F opposite

io E {F — AB^ BA, BB). With respect to E the trials of the new series are no longer

independent. Let m be the number of occurrences of E in n trials. Then

j^(m ~ np2) = 0

and

Bn — E{m — np2)2 = np^q{l -f- 3p) — 2'p^q

as was shown in Chap. XI, Sec. 6.

Let Pm.n be the probability of exactly m occurrences of P in a series of n trials.

Evidently

Pm,n — Am,n “f" Bm.,n

where Am,n and Bm,n are the probabilities of m occurrences of E when the Bernoullian

series of n -f 1 trials ends with A or B, respectively. By an easy application of the

theorems of total and compound probabilities we get

Am,n+l = Am-l,np + Pm.rtP

Bni,n-i-l ~ Am,7iq Bm,nq’

Corresponding to these relations the generating functions

ejt) = ^ Mt) =
m=0 m=0

satisfy the following equations in finite differences:

= ptOn + P^n

^n+1 = qdn +

holding even for n = 0 if we set do = p, = q~ Hence, it follows that Bn{t) and

satisfy the same equations of the second order

- {pt + q)Qn+l 4- pq{t — l)6n == 0

~ (pt 4“ 4- pq(t - l)i^n = 0

«„(«) = dn{t) + Mt) = ^ Pm.ni®.

w = 0

and so does their sum
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Thus, to determine con(0 we have the equation

COn+2 ipt + ” 0

and the initial conditions

00 — 1, wi = 1 —

The general expression of ojnit) is

<^n{t) = An + Bn = An + Bp^f'it -

where fi and ^2 are roots of the equation

- r = pC - i)(r - g)

and

-r2 + 1 + pKt -

1

) B = n
~ 1 - pKt - 1)

Ti fa " fi — fa

If f 1 is the root which for i = 1 reduces to 1, we easily find the following series

p2( _i_ 2 'pq)

log fl - pKt - 1) ^ 1)2 4- . . .

or, setting t = and supposing

p^q(l + 3p)
log fl - ipH - — + • • • .

As to A and B, they can be developed into series of the form

A = 1 + 4. . . .

B = —cu^ 4. . . .

Hence, reasoning in the same manner as in Example 1, we can conclude that the

characteristic function

npH .

<Pn{v) - e V^"o)n{eVl^)

of the variable

m — np^

Va
tends to the limit e ^ uniformly in any finite and fixed interval —I S v Eefer-
ring, finally, to the fundamental lemma, we reach the following conclusion: The
probability of the inequalities

ti\/np^q(l + 3?)) < m - np^ < t2\/np^q(l 4 3p)

tends uniformly (with respect to ti and 12) to the limit

e ^du

as
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Problems for Solution

1.

Consider a series of independent variables xi^ x%^ iCs, . . . where in general

a;* (fc = 1, 2, 3, . . . ) can have only two values and — each with the probability

J4- Show that the limit theorem holds for the variables thus defined if o; > —
but the law of large numbers holds only if a <

Solution. Evidently

E{xk) = 0, E{xl) = E\x?\^ =

From Euler’s formula (Appendix I) we derive two asymptotic expressions

Hence

^2a:+l

Bj), = -j- 2i^ct _j_ , , , — - •"

2q: + 1

^3o:4-l

l^a 4-230: -j, ..
.
4.^3o:^_l!:

3o: + 1

(2a -f" 1)^

3a + 1
OJn —> 0

so that the limit theorem holds. For a = the probability of the inequalities

~e <
Xi A- X2 A- Xn

n
< 6

tends to the limit

and the law of large numbers does not hold.

2.

Let m.i be the number of successes in i Bemoullian trials with the probability p.

Show that the limit theorem holds for variables

Si
mi — sp

Vw ’ f = 1, 2, n

but the law of large numbers does not hold (Bernstein).

Hint;

ai + 6*2 + * '
• + Sn = (pq)

^

(
1 +

+

V5+
, . -.j 4~ • *

V nj
d”

""

V n

where ail, a;2,
. . . Xn are independent variables with two values q and —p associated

in the customary way with trials 1, 2^ ... n.

3.

Consider an infinite sequence of independent variables Xi, Xz, xzj . . . where

Xk can have three values

0, (log ky, “(log ky
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with the corresponding probabilities

^ ^ 2
^

1
^

1

{h + ol) (log {h -f- {h -f a) (log {k + cl)\p (k + a) (log (k + a)}P

€L being a sufficiently large constant. Moreover, ^ and p satisfy the inequality

2p — p + 1 >0.

Show (a) that Liapounoff’s condition is satisfied when p < 1 and hence the limit

theorem holds
; (5) that this condition is not satisfied if p ^ 1 and at the same time the

limit theorem fails at least for p > 1.

Solution, a. By using Euler’s formula we find

03n

1+ -

(2m + 1 - p)
^

(2 + S)m + 1 - P
[log (ra + a)}2^

Hence the first part is answered.

6. The probability of the inequality

is less than

iCi + ^2 4“ • •
• 4" ^ 0

^2
1

{k 4“ ol) (log {k 4- ol)]^

and this, in case p > 1, is less than

-(log a)^-p.
p — 1

Hence, the probability of the equality

Xi X2 * •
• 4" = 0

remains always >1 (log q:)^ ^ and the limit theorem cannot hold. Note
p _ 1

that J5n 00 because 2p — p 4“ 1 > 0.

4. Prove the asymptotic formula

1 + +
1 ‘2

n being a large integer.

Hint: Apply Liapounoff’s theorem to n variables distributed according to Poisson^s

law with parameter 1.

6. By resorting to the fundamental lemma, prove the following theorem due to

Markoff : If for a variable Sn with the mean = 0 and the standard deviation = 1

lim X(4)
= —^ fn-*« V 2tJ _ „
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for any given fc = 3, 4, 5,

to the limit

, then the probability of the inequality Sn < t tends

6.

In many special cases the limit of the error term can be considerably lower than

that given in Sec. 6. For instance, if variables Xi, X2,
. . . Xn are identical and uni-

formly distributed in the interval -34, M the probability Fnit) of the inequality

differs from

tCi -h iCa + Xn t.4
n

12

e ^ du

by less (in absolute value) than

1 if2Y 2^
7.5?2 7r\jr/ TT^n

24

the last two terms being completely negligible for somewhat large n.

Indication of the Proof. First establish the inequalities

<p
^

<p

for 0 ^ ^ ^ t/2. Further, represent F„(0 by the integral

and split it into two integrals taken between 0 and ttV^/V^ and Tr^/nj's/^ and

+ 00 .

7.

Supposing again that xi, x^, . . . Xn are identical and uniformly distributed in

the interval —M, Hi pro/e that for ^ 2

E\xi + X2 A- • •
• A- Xn\

\ ^ 60Vw’
0 < 0 < 1 .

8.

Let Sn be a variable with the mean = 0 and standard deviation =1. If its

characteristic function <pn{t) tends to as w —» w uniformly in any finite interval

— Z ^ f ^ I, show that
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If independent variables rci, 0^2 ,
with means =0 satisfy Liapounoff’s

condition, prove that

E\xi -h X2 A- ’ * • Xn\
10.

Show that for a simple chain of trials

,

j2npqlA-S

p being the mean probability in infinite series of trials and 5 = p' — p"*

11.

A series of dependent trials can be illustrated by the following urn scheme:

Two urns, 1 and 2, contain white and black balls in such proportions that the prob-

ability of drawing a white ball from 1 is p, wdiereas the probability of drawing a

white ball from 2 is g' = 1 — p. Whenever a ball taken from an urn is white, the

next ball is taken from the same urn, but if it is black, the next ball is drawn from the

other urn. The urn at the first drawing is selected by lot, the probabilities of select-

ing the first or the second urn being given. Evidently the course of trials is deter-

mined by these rules without any ambiguity. Let m denote the number of white balls

obtained in n drawings and let

a — p^ A-

Show that the probability of the inequality

m -na< fs/LccQ. - a)n; L =
1 - 2pg

approaches the limit

Indication of the Proof.

V^J-I
^ du.

p(l)
. p(2) . p(3) .

p'4)
m,n; m,nf m,n; m ,n

be the probabilities of having m white balls in n trials when (a) the last ball is white
and from urn 1 ; (5) the last ball is white and from urn 2; (c) the last ball is black and
from urn 1 ; and (d) the last ball is black and from urn 2. The sum

= piM
represents the probability of having exactly m white balls in n trials. The generating
functions of probabilities satisfy the following equations

piii
=
= pU‘^ +

whence it can be shown that they all, as well as their sum—the generating function of

Pm.f);—satisfy the same equation of the second order

Zn+2 — tZn+1 A pqiP — l)Zn = 0 .
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Setting t = one of the characteristic roots will be given by

4/2

(1 ~2pg)tw— 4- . • -

e
^

for small u, while the other root tends to 0 as w —> 0. The final conclusion can now
be reached in the same way as in Examples 1 and 2, pages 297 and 301.
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CHAPTER XV

NORMAL DISTRIBUTION IN TWO DIMENSIONS. LIMIT
THEOREM FOR SUMS OF INDEPENDENT VECTORS.

ORIGIN OF NORMAL CORRELATION

1. The concept of normal distribution can easily be extended to two

and more variables. Since the extension to more than two variables

does not involve new ideas, we shall confine ourselves to the case of

two-dimensional normal distribution.

Two variables, y, are said to be normally distributed if for them
the density of probability has the form

where

(p = ax^ + 2bxy + cy^ + 2dx + ^ey + f

is a quadratic function of x^ y becoming positive and infinitely large

together with \x\ + \y\. This requirement is fulfilled if, and only if,

ax^ + 2hxy + cy^

is a positive quadratic form. The necessary and sufficient conditions

for this are:

a > 0; ac — 62 = A > 0.

Since A > 0 (even a milder requirement A 0 suffices), constants yo

can be found so that

cp = a{x - Xoy + 2b(x - Xo)(y - yo) + c(y - yo)^ + g

identically in a;, y. It follows that the density of probability 6“^ may be
presented thus:

Q—<p — J[^0^a(x~~xo)^2b(x—xo)(.y—yo)—c(y~yo)^

The expression in the right member depends on six parameters K;
a,b,c; xo, yo- But the requirement

/
OO ^00

- « I
J'~'^dxdy = 1

reduces the number of independent parameters to five. We can take

a, 6, c; Xq, yo for independent parameters and determineK by the condition

g~a(a;— zo) ^26(a?— h!o) 2/o) ^y,xdy

308

1
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which, by introducing new variables

^ = o; - xo, V == y - yo

can be exhibited thus

kC f'* = 1.
J — 00J — 00

To evaluate this and similar double integrals we observe that the positive

quadratic form

ae + 2b^r} + C7?2

can be presented in infinitely many ways as a sum of two squares

ap + 26^17 + + (tJ +
whence

a = + 7^7 c = + 5^; b = yd

and

(ad —

By changing the signs of a and ^ if necessary, we can always suppose

ad — jSy = +\/A'

Now we take

U = V = 7^ dif]

for new variables of integration. Since the Jacobian of w, v with respect

to Tj is -x/Aj the Jacobian of rj with respect to Uy v will be I/^/a and;

by the known rules

J-X
Thus

1 ^00 ^00
^_a$2-26^77~C772^^^^ _

J

I

\/A coj — 00

^ = 1, K = y^.
Va ^

'^dudv

Va’

That is, the general expression for the density of probability in two-

dimensional normal distribution is

\/ac — b^
g—aCa;— ao) 2— 26(x— ®o) ith~yo)—c{y~yo)

2. Parameters Xo, yo represent the mean values of variables x, y.

To prove this, let us consider

- rKo) =— f
"

f
“

{x -
TT J — 00 J — 00

Xo)e“ a(ix—XQ)^2bix'-~xo) iy—yQ)—ciit~yQ) 2
,

''dxdy.
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To evaluate the double integral, we can express x and y through new
variables w, v introduced in the preceding section. We have

8u — Bv —yu + av

and

E(x — xq)

whence

and similarly

~
V^J^ f

^ = 0,

E{x) = Xq,

E(y) =
2/0 .

3. Having found the meaning of Xo, yo we may consider instead of x, y,

variables x — Xo, y -- yo whose mean values = 0. Denoting these new
variables by x, y again the expression of the density of probability for

X, y will be:

y/aC —
TT

It contains only three parameters, a, b, c. To find the intrinsic meaning

of a, b, c let us consider the mathematical expectation of {x + Xy)^

where X is an arbitrary constant. We have

E{x + Xy)2 = r r (a; +
J ~ — oo

or, introducing u, v defined as in Sec. 1 as new variables of integration,

E{x + Xy)^ = ^ [(^
“ Xy)V + 2(8 — X7)(-~/3 + Xo')^^^; +

+ (B —'Ka)V]e~^^^^'^dudv ==

1 ^00 ^00

= ^ I

I
[(5 - Xt)2 + (^ - \ay]u^e-^^^'^dudv =

But

whence

~ ~ + ^-2^'

52 ^2 — -y2 ^ ^2 _ 4-

E{x^) + 2\E{xy) + = ^ - 2xA +

and since X is arbitrary

c
E(x^) =

2A
B(.m) = -L, E{y^) =
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On the other hand, if o-i, 0-

2,
and r are respectively standard deviations

of X, y and their correlation coefficient, we have

Hence

and

or

E{x^) = erf, E(xy) = r<ri(r2, E(y^) = o-f.

2A
a

2 6— = 0
-

2J ^ = -'rcri(r22A

= Or|<r|(l - r2)

Finally,

a =
2(rf(l - r^y

2A

6 =

2cr|<r|(l - r^)

Va =

2or10
-

2(1 — r^)

2o-ia'2-\/l —

c =
2al(l - r^)

With these values for a, b, c, and a/a the density of probability can

be presented as follows:

1 £+©]
2^0- i<r2vl —

and the probability for a point re, y to belong to a given domain jD will be

expressed by the double integral

2x0- 10-2Vl “ 5^^J*J*
iD)

2(1 — r2)L \<^i/ O’! 0^2
r-vi

-idxdy

extended over D.

4. Curves

1

2(1 - r2)
2r^t +

Cl cr2
Z == const.

are evidently similar and similarly placed ellipses with the common
center at the origin. For obvious reasons they are called ellipses of

equal probability. The area of an ellipse corresponding to a given value

of I (ellipse 1) is

JlH— = 2nrlai(r2^i “* tK
'S/A
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whence the area of an infinitesimal ring between ellipses Z and Z + cZZ

has the expression

27r(ri(r2\/l — T^dL

The infinitesimal probability for a point x, y to lie in that ring is

expressed by
6-yz.

Finally, by integrating this expression between limits h and U > Zi, we

as the expression of the probability for y to belong to the ring between

two ellipses h and Z2 . If Zi = 0 and h = Z,

1 --

gives the probability for x, y to belong to the ellipse Z.

If n numbers Z, li, Z2,
. . . Zn-i are determined by the conditions

\ ^ Q~l = — Q-h = Q-h ^ 0-h — . , . — Q-ln-2 _ Q-ln-l = —
n + 1

the whole plane is divided into n + 1 regions of equal probability:

namely, the interior of the ellipse Z, rings between Z,Zi;Zi,Z2 ;
. . . ln-% Zn-i

and, finally, part of the plane outside of the ellipse Z„_i,

6. To find the distribution function of the variable x (without any
regard to y), we must take for D the domain

— <x) < x < t; — 00 < y < + 00,

As the integral

27r<7-ia-2'\/l — r^J- 00J~ «

1 /*t El r cc 1 El
j===\ e

I
e ^0--r^)dz —I e ^‘^^^dx,

Ti'vl T ^—00 cri'\/27r^— 00
2x0-1

we see that the probability of the inequality

X < i

is expressed by

_j_f
o-iv^J -

Similarly, the probability of the inequality

y < t
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is

1 rt -.jL

Thus, if two variables x, y are normally distributed with their

means = 0, each one of them taken separately has a normal distribution

of probability with the common mean 0 and the respective standard

deviations <ri and 0-

2 . Variables x and y are not independent except when

r = 0. For if they were independent the probability of the point

X, y belonging to an infinitesimal rectangle

t < X < t dt] T < y < T + dr

would be

1 ^
Q 2cri2

Z'Kdidi

whereas it is

L p, 2(l-r2)[ Oi) cr2

'^02) '\dtdT,

27rc7io-2'\/l —

and these expressions are different unless r = 0. Thus, except for r = 0,

normally distributed variables are necessarily dependent in the sense

of the theory of probability. Dependent variables are often called

^^correlated variables.” In particular, variables are said to be in ^^normal

correlation” when they are normally distributed.

6. The probability of simultaneous inequalities

X < X < X', y <t

is represented by the repeated integral

27r(ri(72'\/l — T^jx

X'

e ^^^''dxl:
2(7

-22(1 —r2
) dy

while

0*1

X'

e ^^^""dx

is the probability that x will be contained between X and Z'. Hence
(Chap. XII, Sec. 10) the ratio

<r2A/27r(l — r^)

^ ft 1 r _<n Y

fX '

__£f_

Jx ^ ^"^^^dx

can be considered as the probability of the inequality

y < t
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it being known that x is contained between X and X'. Considering X' as

variable and converging to X the above ratio evidently tends to the

limit

1 f dy

which can be considered as the distribution function of y when x has a

fixed value X. Hence, ^ for a; = X has a normal distribution with the

standard deviation

and the mean

Y =
0*1

Interpreted geometrically, this equation represents the so-called

“line of regression’’ of y on x.

In a similar way, we conclude that for ^ = F the distribution of x

is normal with the standard deviation

<Ti\/l —

and the mean

X = r^F.
0-2

This equation represents tho line of regression of x on y.

LIMIT THEOREM FOR SUMS OF INDEPENDENT VECTORS

7. So far normal distribution in two dimensions has been considered

abstractly without indication of its natural origin. One-dimensional

normal distribution may be considered as a limiting case of probability

distributions of sums of independent variables. In the same manner
two-dimensional normal distribution or normal correlation appears as a

limit of probability distributions of sums of independent vectors.

Two series of stochastic variables

Xl, 0^2, .. . Xn

Vh ^2, . . . 2/n

define n stochastic vectors Vi, ^2^ . , . so that Xi, yi represent com-
ponents of Vj on two fixed coordinate axes. If

E(xi)=^aiv E(yi)^hu
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the vector with the components ai, bi is called the mean value of Vi.

Evidently the mean value of

V = Vi + V2 + • *
• + Vn

is represented by the vector

a = ai + 3-2 + * •
• + an

and that of v — a is a vanishing vector. Without loss of generality

we may assume at the outset that

E(x^) = E(yi) = 0; i = 1, 2, . . . n,

in which case E(y) = 0. Vectors Vi, V2 , • . . are said to be inde-

pendent if variables Xij yi are independent of the rest of the variables

Xj, yi where y 9̂ i.

In what follows we shall deal exclusively with independent vectors.

8. As before, let x^, yk be components of the vector

Vk{k = 1, 2, . . . n).

Then

X = + 0^2 + * *
* +

V = 2/1 + 2/2 + • •
• + 2/n

will be the components of the sum

V = Vi + V2 + * • • 4" Vn.

If

E{xk) = E{yk) = 0

E{xt) = bk, E{yl) = Ck, E{xkyk) = dk

then

E(X) = 0, E(Y) = 0

E(X^) = 61 + 62 + • • • + 6. = £n
E(Y^) = Cl + C2 4* • *

• + Cn = Cn

E{XY) = di 4" ^2 4" * *
• 4“ dn =

because

= 0 if 2 9^ h

variables Xi and yj being independent.

Let us introduce instead of variables Xk, yk{h = 1, 2, . . . n) new
variables
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and correspondingly

X Y
S = —-==j cr = —

\/^

instead of X, F. We shall have:

mk) = Eirjid = 0

mi) = 1^: mi) = #
JLfn

and

E{s) = E((t) = 0

E(s^) - E{(t^) = 1

E{s<r) == rn-

The quantity fn, the correlation coefficient of s and cr, is in absolute value

^1. We define

v) =

as the characteristic function of the vector s, cr. Evidently 0) and

<^)(0, y) are respectively the characteristic functions of $ and (r. Since

0i{us-\-va) giCwfi+t’iyi)
.
gi(u|24“Vi72) . . .

^i{u^w¥vrin)

and the factors in the right-hand menaber represent independent varia-

bles, we shall have

9, For what follows it is very important to investigate the behavior

of v) when n increases indefinitely while w, v do not exceed an
arbitrary but fixed number I in absolute value.

Let

= fk, E\yk\'^ = Qh

and

/i +/2 + • • • +/w _

+ P2 + • *
* + fiTn _

If a?n and rjn tend to 0 as n oo, we shall have

(1 ) v) — g--KwH*2rnWi;+v 2
)

I

Q^moin+tjn) — J

provided
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and n is so large as to make

Z(a)| + 77I) < 1 .

Since

= 1 + i{uik + vrik) ~ ^{u^h + mkY +

we shall have

:

9
'

+ ^E\u^, + wkl^; \e'\ < 1.

On the other hand,

1 - - 2dh
uv ^2 _ Q

2nn“' 2^yBnCrr^

bk . 2dk Ck
—rr-=rU^ -UV ---^2?^

25n 2Vb:c: 2c;

+ \[E{uh + |0"l < 1

and so

bk „ 2dk Ck ,

Furthermore,

E{u^k + ^ + 2w|r7| + »?|) <1
because

^(11) = ^ < ‘oi EivD = # < ’jI,
JDn

Also

lE{u^k + vvk)^? < [E(u^k + vvk)^]^ ^ E\u^k + yr//cl*

^ 'f”

Taking into account these various inequalities, we may write

^(e«=^£,+r,*)) = e
2V^ (1 + ffk)
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where

Finally,

^{XL, V) = ^ (1 + ^2) « *
* (1 + (Tn)

and

\4>{Uy v) — e~Kw^2r„wr4-ij2)
I

<;;
g|ffi|+k2|+ • • • +M — ^ < — 1

as was stated.

10. Theorem. Let P denote the probability of simultaneous inequalities

h S s < ti] To ^ cr < n.

Provided r^ remains less than a fixed number a < 1 in absolute value and

the above introduced quantities con, Vn tend to 0 as n--^ co
,
P can be expressed

as

P =
2x^1

1 p* p
1 ’ tJro

g 2(1 -r«2) ^

where An iends to 0 uniformly in U, h; ro, ri.

//, in addition^ rn itself tends to the limit r(|r| < 1)P will tend uniformly

to

2Wl
1 p
1 -^^Jtojro

6 2(1 -7*2)

Proof, a. In tr5dng to extend Liapounoff’s proof to the present case

we introduce an auxiliary quantity 11 defined as

/ 1 /u-sY rri /v-<rY \
n = \ ^^du-

\
e y^^dvl

Using the inequality

L f"
\/^Jx

e~^''dt < for :r > 0,

one can easily derive the following inequalities:

(2)

1
^—

A

2 nri / t?— <r\ 2

I- e V W dw e V i _ i<
•’TJJo Jro

l / / <!-- / fo -

a

\ 2 — /'to—

A

A
^ a V^/-(-g \A / -j- g V A / y
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if

(3) to ^ s < tlj To ^ (T < Tl,

and

(
Tl— <r\ 2 ^ TO— cr\ 2\

h J ^ e \ h J
)

if at least one of the inequalities (3) is not fulfilled. From the definition

of n, P and from (2) and (4) it follows that

[p - n| < ^E\e V w +e y J

But referring to (1) and setting

giZHo^n+vn) — 1 = a„(Z)

we have by virtue of the developments in Chap. XIV, Sec. 3,

(5) |p - n| < 2«„(f) + hV2 +
-(-Y

8 e

x/tt

6. Replacing ti by variable quantities t, r and taking the second

derivative of n with respect to t and r, we get

dm
dtdr

On the other hand

g-i«U+T1>)gi(u»+OT)£^y^j,^

whence

S iX.X vVvdv.

Here we substitute

<i>{u, v) = e-i(«»+2r,ur+r!!

For all real u, v

\g{u, t;)| g 2.

If ^ I, bl ^ I, where I is an arbitrarily fixed number, and n is large

enough, we have

\g{u, i>)| ^ anil).
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Hence, the double integral

iJJ- 'o)dudv

extended over the region outside of the square \u\ S I, kl S I is less than

2x2,
e ^ rdr <

hn^

in absolute value. The same double integral extended over the square

|ul S I, ^ I is less than

TT

in absolute value. Thus, referring to (6)

dm
dtdr -U-S

A2 1—
-j- (2i2 ^,2)

_ _ (y2 2rnUtJ+ 2J 2)

e-ntu+Tv,^^y + R

and

hn^

Now

~(u2+ tl2)

\R\ < ^

l_^(„2+,2). |x|<l

and

Jh^
16x2J

oo n 00

I- 00 ^ — 00

^(uH-2rnuv'{-v^) _|_ p^'^dudv <

Hence

and

4x(l — 4x(l

dm 1 r " r

”

'Iirr' = I

e“K«2H-2rnU2;+t>2)g~i(fu-H-t;)^^^y + J?'
dtdr 4xV_ooJ-co

|2?1 < ^

By transformation to new variables

+
4x(l

^ = u + rnV; I? = vy/T
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the foregoing double integral becomes

1

so that finally

27rVT
=6 2(1 — rn2)

(i2-2r„(r+T2)

1dm
dtdr 27r\/1 “

Integrating this expression with respect to t and r between limits toj ti

and To, Ti, we get:

(7) n =
27rV'lHJ71 rlJto Jr

”
-57T^-r«(*“-2r„(r+r2)

g 2(1 -r»2) ^ p

where

(8) |p| < {h - io)(n - to)

(W)2

fitnil) + +
Airil - a^)^j

Hence combining inequality (5) with (7) and (8),

P =
27rVlHJ‘T g

2(1 -rn2)^^
2r„<T+r ]

where

1A„| < 2 -[ — io)(Ti — To)
TT

(hir-

<..® + r
+

+ «i - k)(r, - ..)l + iV2 +
47r(l —

Considering fo, ifij ro, ri as variable and denoting an arbitrarily large

number by L, we shall assume at first that the rectangle D

to S S S ti, To ^ cr g n

is completely* contained in the square Q:

is| ^ L, |(r| ^ L.

Then, taking h — l~^ we shall have

lA.i < (2 + ^)aM + ie~i(-^r‘‘+iL<] + 3
-
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Given an arbitrary positive number e, we take I so large as to have

/ o __3 V 7 27—1 1

Ze ¥ -4=Z 2 + + V2Z 2 + —±L1
-3 <

/ :r(l-«2)2

After that, since a„(/) 0 as oo (for a fixed Z) we can find a number

?^o(€) so that

for n > noie). Finally, we shall have

1

A„1 < e

as soon as n > no{e) ;
that is, An tends to 0 uniformly in any rectangle D

contained in the square Q with an arbitrarily large side 2L.

c. To prove that An tends to 0 uniformly no matter what are to, h;

TO, Ti we observe that the integral

2t\/1— ff«1 - riJ J
2(1

- 2rntT +r2)
dtdr

extended over the area outside of Q becomes infinitesimal as L —> .

Accordingly, we take L so large as to make this integral <6/2 (no matter

what n is) and in addition to have < 6/4. The number L selected

according to these requirements will be kept fixed.

Let D' represent that part of D which is inside Q, the remaining part or

parts (if there are any) being D". Let P' and P" denote the probabilities

that the point a, <t shall be contained in D' or P", respectively. Also,

let J' and /" be the integrals

2(1

extended over P' and P", respectively. By what has been proved, given

6 > 0 a number no(e) can be found so that

forn > no(€). Now
IP' - J'l < €

P = P'+P"; / = +
whence

|P J1 < 6 + P" + J"

for n > rioie). Since by Tshebysheff's lemma (Chap. X, Sec. 1) the
probability of either one of the inequalities
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Is] > L or \<r\ > L

is less than 1/L, we shall have

P"

Also,

J <2>

whence

\P-J\< 2e

for n > noie)

;

that is, the difference

P -
1

2(1 -rn*)

tends to 0 uniformly, no matter what <o, ti; ro, ti are.

Finally, the last statement of the theorem appears as almost evident

and does not require an elaborate proof.

11, The theorem just proved concerns the asymptotic behavior of

the probability P of simultaneous inequalities

to ^ s < h; tq ^ a < Ti

which, due to the definition of s and o-, are equivalent to the inequalities

to\^Wn ^ + * * " + rCn <
ro\/C^ ^ + 2/2 + • * • + '^/n < ri\/C^n*

From the geometrical standpoint the above domain of s, o* is a rec-

tangle. But the theorem can be extended to the case of any given

domain R for the point 5, cr. It is hardly necessary to enter into details

of the proof based on the definition of a double integral. It suffices to

state the theorem itself:

Fundamental Theorem. The prohahility for the point (5,
a) to be

located in a given domain R can he represented^ for large n, by the integral

1

2(1 -r»2)
(<2-2r««r4-T2)

dtdr

extended over R, with an error which tends uniformly to 0 as n becomes

infinite, provided

Wn 0, Vn 0,
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while for all n

\rn\ < a < 1,

In less precise terms we may say that under very general conditions

the probability distribution of the components of a vector which is the

sum of a great many independent vectors will be nearly normal.

The first rigorous proof of the limit theorem for sums of independent

vectors was published by S. Bernstein in 1926. Like the proof developed

here it proceeds on the same lines as Liapounoff^s proof for sums of

independent variables. Moreover, Bernstein has shown that the limit

theorem may hold even in case of dependent vectors when certain addi-

tional conditions are fulfilled.

12 . A good illustration of the fundamental theorem is afforded by
series of independent trials with three alternatives, E, F, G. For the

sake of simplicity we shall assume that probabilities of J?, F, G are

p, q, T in all trials. Naturally

p + q + r = 1.

In the usual way, we associate with these trials triads of variables

Vi, Zi (i = 1, 2, 3, ... )

so that

Xi = 1 or 0 according as E occurs or fails at the ith trial;

yi = 1 or 0 according as F occurs or fails at the ith trial;

Zi = 1 or 0 according as (? occurs or fails at the ith trial.

Evidently

E{xi) = E{xf) = p
E{y,) = E{y\) = q

so that vectors Vi with components

= Xi - p, 7]i ^ yi ^ q

have their means = 0. The independence of trials involves the inde-
pendence of vectors Vi, V2 , . . . Vn. Hence we can apply the preceding
considerations to the vector

V = Vi + V2 + •
‘ + v„

with the components

X = + • *
• + $71

F = )7i + ^2 + * •
* + ^7n.

We have

Bn = S(X2) = np(l -p); Cn = E{Y^)^nq{l-q).
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Moreover,

and

E{^ir)i) = E{xiyi) — pq = —pq

E{XY) = rn-y/Wn-VC'n = —npq

whence

-\Jpq{l - p){l - q)

The quantities denoted by fh, Qk in Sec. 9 are in our case

fk == E\^k\^ = pO- - pY + (1 - p)p^

Qk = E\rtk\^ = q{l - qY + (1 - q)q^.

Hence

_ y(l - pY + (1 - P)P^ ^ g(l - + (1 - q)q^

n^pi(l — p)i
’

n^g*(l — qY
’

and the conditions

—» 0
,

rjn 0

are satisfied. The fundamental theorem, therefore, can be applied.

If k, I, m are the respective frequencies of events E, F,Gmn trials, the

quantities X and Y represent the discrepancies

X = & — np, fjL
— I — nq.

Introducing the third discrepancy

we shall have

V = m — nr

X + /X + j/ = 0

so that V is determined when X and /x are given. The last two quantities,

however, may have various values depending on chance. Concerning

them the following statement follows from the fundamental theorem:

Theorem. The probability that discrepancies X, p in n trials shall

simultaneously satisfy the inequalities

a^'s/n < X < ai's/n] fia^/n < p < pi\/n

tends uniformly, with indefinitely increasing n, to the limit

1 rcct m
27r

V

pqrjao
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where, to have symmetrical notation, y is a variable defined by

a + + 7 = 0.

On account of symmetry, perfectly similar statements can be made in

regard to any two pairs of discrepancies X, /z, v.

Since the fundamental theorem and its proof can be extended without

any diiEculty to vectors of more than two dimensions, we shall have

in the case of trials with more than three alternatives a result perfectly

analogous to the last theorem.

Theorem. Each of n independent trials admits of k alternatives Ei,

Ei, , , . Ek the probabilities and the frequencies of which respectively are

pi, p2 ,
. . . pk and mi, m2 , . . . mk. The probability that the discrep-

ancies mi — npiii = 1, 2, . . . fc — 1) should satisfy simultaneously the

inequalities

ai^/n < mi — npi < fii\^n

tends uniformly, with indefinitely increasing n, to the limit

k

1

k-1

(2ir) 2 VpiPa

• • I e 1 dtidt2 dtk^

where

tk — —(^1+^2+ ‘ •
* + tk-.f)»

From this theorem, by resorting to the definition of a multiple integral,

we may deduce an important corollary: Let Pn denote the probability of the

inequality

imi npiY ^
(m2 np2)^

+ +up I np2

Then, as n tends to infinity Pn tends to the limit

{mk — npkY
npk

^ 2\pl dtidt2 dt,k-1

(2ir) 2 1/ Pk

where the integration is extended over the {k — 1) dimensional ellipsoid

Pi Vi Pk~
It is easy to see that the determinant of the quadratic form ip in

(fc — 1) variables is {pip2 • • * Hence, by a proper linear trans-

formation the above integral reduces to

f r . . . . .

.

(2x) 2

dvh-.i
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the domain of integration being + vl + • + t)|_i ^ But
this multiple integral, as will be shown in Chap. XVI, Sec. 1, can be
reduced to a simple integral

k-l

2r 2

Thus

/j ^ I e 2 u^-^du.

limP„ = -
iTs-

2 2 r

1

7^ rr
I

e 2 u^-^du.

(^T
The probability Qn = 1 — Pn of the opposite inequality

Ml
~ 2ipi)2 (ma - rapa)2

, . .
,
(m^ — npk)^ 2

^ npi nps nph ^

tends to the limit

fc-3

2 2 r

1 f“ 4

and for large n we have an approximate formula

Qn — h— 3

2 2 ri

e-^)
111

e 2

but the degree of approximation remains unknown. In practice, to

test whether the observed deviations of frequencies from their expected

values are significant, the value of the sum (A), say is found; then

by the above approximate formula the probability that the sum (A) will

be greater than x^ is computed. If this probability is very small, then

the obtained system of deviations is significantly different from what
could be expected as a result of chance alone. The lack of information

as to the error incurred by using an approximate expression of Qn renders

the application of this ^'x^Aest'^ devised by Pearson somewhat dubious.

Hypothetical Explanation of Empirically Verified Cases of

Normal Correlation

13. Normal distribution in two dimensions plays an important part

in target practice. It is generally assumed on the basis of varied evidence

collected in actual target practice that points of a target hit by projectiles

are scattered in a manner suggesting normal distribution. By referring
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points hit by projectiles to a fixed coordinate system on the target, it is

possible from their coordinates to find approximately (provided the

number of shots is large) the elements of ellipses of equal probability.

Dividing the surface of the target into regions of equal probabilities as

described in Sec. 4, and counting the actual number of hits in each

region, the resulting numbers in many reported instances are nearly

equal. That and the agreement with other criteria are generally con-

sidered as evidence in favor of assuming the probability in target

practice to be normally distributed.

Two-dimensional normal distribution or normal correlation has been

found to exist between measurable attributes, such as the length of the

body and weight of living organisms. Attributes like statures of parents

and their descendants, according to Galton, again show evidence of

normal correlation.

Facing such a variety of facts pointing to the existence of normal

correlation, one is tempted to account for it by some more or less plausible

hypothesis. It is generally assumed that deviations of two magnitudes

from their mean values are caused by the combined action of a great

many independent causes, each affecting both magnitudes in a very small

degree. Clearly, the resulting deviations under such circumstances may
be regarded as components of the sum of a great many independent

vectors. Then, to explain the existence of normal correlation, reference

is made to the fundamental theorem in Sec. 11.

Problems for Solution

1 . Let p denote the probability that two normally distributed variables (with

means = 0) will have values of opposite signs. Show that between p and the corre-

lation coefficient r the following relation holds:

r — cos pTT.

2. Variables x, y (with the means = 0) are normally distributed. Show that the
probability for the point a:, y to be located in an ellipse

X y

O' I O'ia'2 (To

is greater than the probability corresponding to any other domain of the same area.
3- Three dice colored in white, red, and blue are tossed simultaneously n times.

Let X and Y represent the total number of points on pairs : white, red and white, blue.
Show that the probability of simultaneous inequalities

7n + ^0 < X < 771 + iiV 7n -f roV^ < 7 < 7n + n
tends to the limit

~U^-tr+r^)dtdT

as n 00.
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Three dice, white, red, and blue, are tossed simultaneously n times. If h and I

are frequencies of 10 points on pairs: white, red; red, blue; show that the probability

of simultaneous inequalities

tends to the limit

11 Tri

2^\/120Jfo Jro

as n —^ .

5. Two players, A and J5, take part in a game arranged as follows : Each time one

ball is taken from an urn containing 8 white, 6 black, and 1 red ball; if this ball is

white, A and B both gain $1

;

black, A loses $2, B loses $4;

red, A gains $4, B gains $16.

Let Sn and o-n be the sums gained by A and B after n games. Show that the probability

of simultaneous inequalities

Iq^/

^

Sn ti\/^71) Tq'S/48W K OTn Ti\/4S>71

for very large n will be approximately equal to

^ %) U tJTQ

Note that the probability of the inequality Sncrn < 0 is about 0.13—not very small

—

so that it is not very unlikely that the luck will be with one player and against another.

6. Concentric circles Ci, Cs, Cs, . . . in unlimited numbers are described about

the origin 0. Points Pi, P2, P3, - . . are taken at random on these circles. Let R
be the end point of the vector representing the sum of vectors OPi, OP2, OP 3, ....
If ri, Tij rs, . . . are radii of Oi, C2, Czj . . . and the condition

rl+rl + ‘

(r? 4- r- + • • • + rl)^
as n 00

is fulfilled, show that the probability that R will lie within the circle described with the

radius p about the origin will be very nearly equal to

1 — 6 *
*

* +3*71.^

for large n.
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CHAPTER XVI

DISTRIBUTION OF CERTAIN FUNCTIONS OF NORMALLY
DISTRIBUTED VARIABLES

1. In modern statistics much emphasis is laid upon distributions of

certain functions involving normally distributed variables. Such dis-

tributions are considered as a basis for various ^Hests of significance^'

for small samples, that is, when the number of observed data is small.

Some of the most important cases of this kind will be considered in this

chapter.

Problem 1* Independent variables xi, X2,
. • • Xn are normally

distributed about their common mean == 0 with the same standard

deviation cr. Find the distribution function of the sum of their squares

s ^ x\+xl+ •
•

• +xl.

Solution. The inequality

a:? < t

being equivalent to

— < Xi < v^,

the distribution function of x\ is

1 [*Vi 1 !L -I
Fi(t) = —= I

e ^^^dx = —
7= I

e Hu for i ^ 0
<rv2Tj-.v1 (rw^TTjo

Fi{t) =0 for i < 0.

Hence, the characteristic function of any one of the variables x\,

. . . a^^is

<rV27rJo

and that of their sum

Consequently, the distribution function of s is expressed by

F(t) = C +

331
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and it remains to transform this integral. To this end, imagine a variable

distributed over the interval (0, + ) with the density

n

Its characteristic function is

(,V5)-(i - il)-^

and since the distribution function is given a priori, we must have for

4^0

du = const. +

Hence

F{t) = const. +
1 1

du.

The constant must be == 0 since Fit) as well as the integral in the right

member vanishes for t = 0. The final expression is therefore:

t _ju_

e du form = -

(vV2)»r(^L-

Fit) =0 for 4^0.

The probability of the inequality

+ A + ' '
' + xl<t,

t ^ 0

on the other hand, can be expressed directly as a multiple integral

" (crV2^)d J ' y dx„

extended over the volume of the n-dimensional sphere jS

+ a:| + • •
• + a:* < 4.

By equating both expressions of Fit), we obtain an important transforma-
tion,
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( 1 ) JJ • /
e 2<r

2

dXidX2 dXn =

= re du.

+ xl) is an arbitrary function of

u = xl + xl+ •
•

• + xl

If Fixl + xl +

the integral

extended over the whole ^-dimensional space represents the mathematical

expectation of F(u). On the other hand, the distribution function of

u being known the same multiple integral will be equal to

• .
• +Xn ^

e 2cr2 4“ xl)dxidx2 dXn

1 r “

I
0 2a

n —

2

2 du.

Taking in particular cr = 1, F(u) = we get the formula

r r r * •
• +^^)+av^t^+ —

II
* *

•
j
e 2 dxidx 2

*
*

• dXn =(2)

__ 7r2 r » -Uaui n-2

U 2 dUj

^*2

which will be used later.

2. Problem 2. Variables Xi, x^, .

Denoting their arithmetic mean by

Xl X2

Xn are defined as in Prob. 1.

“b x^

n

find the distribution function of the sum

S = (xi — sY + ix2 — sY ' + i^n
—

Solution, The probability of the inequality

S < t

is expressed by the multiple integral
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20-2 dxidx% ‘ *
* dxn

extended over the volume of the n-dimensional ellipsoid

(rci - sy + (x2 — sy + • ‘ + (xn - sy < t.

Let

Xi -- S = Uij X2 s — Uzy Xn — 8 — Unj

whence

Ul “t* U2 -j- * • • -j- Un ” 0

and

ccf + + * *
• u\ + ul+ •

•
• +ul +

Taking Uiy U2 j
. . . Un^i, and s for new variables, we must first find the

Jacobian J of Xi, 0:2 ,
.. . Xn with respect to Ui, W2 ,

- . . Un-i^ 8, It is

1 1 0 0 • 0 1 1 0 0 . . . 0

1 0 1 0 • • 0 1 0 1 0 • • • 0

J = 1 0 0 1 • 0 =
•

1 0 0 0 • 1 1 0 0 0 • • • 1

1 -1 -1 -1 • • • -1 n 0 0 0 • • • 0

In the new variables the expression for F{t) will be

m =
(as/2t)

ns® ni®4-W224-

"2<r2

+Un^
2<r2 dsduiduz dUn—l

and the domain of integration in the space of the new variables is defined

by
~ 00 < s < 00

“1 + ^<2 + • •
• + ul_i + (Ml + M2 + • •

• + M„_i)2 < t.

After performing the integration with respect to s, we get

\/m C C C _ * ' _+««*
F{t) =- ^

(<rV2^)-

The quadratic form

2<r® duidu2 dUn-l.

(p ul + ul+ • •
• + + (U 1 + U2 + • •

^ + Un^iy

can be represented as a sum of the squares of (n — 1) linear forms in

variables 1/ 1 ,
. . . Un-^u

<P =vl + vl + • • - +i;Li-

The Jacobian
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d{vi, Vj, . . Vtl-i)

d(ui, U2, . . . Un-l)

is the square root of the determinant of the form ip, which is the same
as the determinant of linear forms

1 dip ^

2^ + +
1 d

2^ + +

1 dip

2 dUn~l

Now, in general

p times

1X1 • •
• 1

= + ^2 + • ‘
* + 2Un^i.

= (X ~ 1)P-1(X + p - 1)

llll • •
• X|

so that the determinant of is =n, whence

divi,

a(wi,

V2y •

U2j •

• • t'n-l)

l)

= \/n

and

d(wi, U2, * ' ^n—

0

_ 1

a(ai, V2y • ’
• Vn-l) Vn

Therefore, taking Vi^ V2, . . . Vn-1 for new variables.

as follows

Fit) = ;— • •
• e ^^idv2

where the integral is extended over the volume of the sphere

• •
* +Vn~.l^

e dvidv2
•

*
• dvn^i

vl + vl+'-'+ vl_i < L

This multiple integral is exactly of the type considered in the preceding

problem, and it can be reduced to a simple integral as follows

/J J‘
• • • -f-gw-X^

dVidV2 • • • dVn^l

T ^

— 1

'*t u n— 3

e 2 du.
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After substitution, the final expression of F{t) is

m 1 r

F{t) =0 for f g 0.

I ^ n-"3

e 2*^% ^ du for i > 0

3. Problem 3. Variables rri, x^, . * • Xn are defined as in Prob. 1.

As in Prob. 2, we set

rri + a:2 + +
n

Ui == Xi - s; e == 1, 2, . . .

and introduce the quantity

juf + ul + +w|
J n

What is the distribution function of the ratio

s

€

or, which is the same, the probability F{t) of the inequality

s < ^e?

Solution. First, assuming t to be positive, let us find the probability

^0) of the inequality

s

or

^1 + ^2 + ' •
• + <

This probability can be presented in the form

where the multiple integral

j.e duidu2
• • dun-i

in which

Un — — (U\ + M2 -f-
• • •

-f- W„_i)
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is extended over the domain

^ Ul+Ul + • + -|- (Mj -|- ^2 + • •
• + g

Proceeding in exactly the same manner as in Prob. 2, we can transform

^(s) into

extended over the sphere

t'! + vl +

20-2
dvidvz dVn^l

ns^

T
in the space of the variables vi, . Vn-i^ For this multiple integral

we can substitute a simple integral

n — l ns^ n— 1 n — l s^ r
n — l\Jo Jn — l\jo

e 2or2^n-2^^

and thus reduce ^(5) to the form

n—l n—2 3

n 2

After substitution we can express 4>{t) as a repeated integral

n

2n2
^(t) =

-^(cV2yT{~^

The derivative of is

J

'*
00 ^
e

I

0 Jo

ns2 _n|2

4>'{t) =
2nH-^

V^(<rV5)’‘r(^)sj;
, 2o-*V ^tVon-:Ids

<i)
(1 + 1^)

MIS
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whence

4,{t) = C-

Now

<i)
1

f' dz
n"

“(1 +

f “ dz

I
”

so that C — 1 and

4>{t) = 1 -
— l\J- 00

dz

(1 +

Such is the probability of the inequality

s ^ U.

The probability F(S) of the inequality

s < te

will be 1 — or

m =
r!

r,L
dz

(1 + ^2)2

•but this is established only for positive t. However, this result holds
for negative t as well. For t being negative = —r the inequality

s < — r€

is entirely equivalent to

> T€

and its probability is evidently

F(—t) = = 1 + z") 2dz.
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But

+ Hz == 1

which permits of writing the preceding expression for F(~t) as follows*

Thus, no matter whether t is positive or negative, the distribution func-

tion of the ratio

5

€

or the probability of the inequality

S <
is given by

The distribution of the quotient s/e was discovered by a British

statistician who wrote under the pseudonym “Student,^' and it is com-
monly referred to as Student’s distribution.” The first rigorous proof

was published by R. A. Fisher.

4. Problem 4. Variables x, y are in normal correlation. A sample of

n corresponding pairs, Xi, yi, X2, y^; , . . yn is taken and the ^^correla-

tion coefl&cient of the sample” is found by the formula

Zjxi - s){yi - s')

^ - sY - s')"

where, for the sake of abbreviation,

ajj 4- X2 + * *
* + 2/i + 2/2 + * •

* + l/w
S = — ) S = ^

n n



340 INTRODUCTION TO MATHEMATICAL PROBABILITY [Chap. XVI

Find the distribution fxinction of p, that is, the probability P of the

inequality p < P for a given P(— 1 < B < 1).

Solution. Since the expression of p is homogeneous of degree 0 in

xi,Xi, . . . Xn’,yi,y^, . we can assume <ri = vz = 1. Also without

loss of generality the expectations of x and y may be supposed =0.

Denoting by r the correlation coefficient of x and y, the density of proba-

bility in the two-dimensional distribution will be:

2x(l - e 2(1 -r!)
(x^-\-y^~2rxy)

Hence the required probability will be expressed by the multiple integral

(27r)"(l -

extended over the 2n-dimensional domain

(3) Zixi — s)(yi — s') < Ry/'Z{xi — s)^ • S(2/i — s'Y

and

(4) = Sa;? -h Sy? - 2rY.xiyi.

Replacing Xi, yi(i = 1, 2, . . . n), respectively, by Vl — rHi, a/I — r^yt,

we can write P thus

:

JJ -f
2 ( 1

-

'‘^(IXi dx^dyi dyn

P = (1

(2^ J*®
*

d-Xndyi dy^

while (3) and (4) still hold but with the new notation for the variables.

Let us set now

Xi — s = Uij yi — s' = Vi,

then

+ 1^2 + * •
* + = 0, z;i + 2^2 + * '

• + 2^71 = 0.

Introducing s, s'; Zil, ^2 ,
. . . \vi,V2j . . . t^n-i as new variables, we

find as in Sec. 2

P =

where

-
(2.

- f r C
j^)7i II

* ’
*

I ^ ^ dsds'du\ • •
* dun-~^idvi * *

* dvn-^i

= ns^ + m'^ - 2nrss' + 'Luf + - 2r'I,UiVi
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and the domain of integration is defined by the inequalities

— CO < s < 00
;

— oo<s'<oo
2uiVi < R\/2u? •

Now by the same linear transformation the quadratic forms Zuf,

Zvf (each containing n — I independent variables) can be transformed

into

n—l n—

1

t=l i — 1

at the same time

n n— l

i = l i= l

Proceeding as in Sec. 2 and noting that

we find that

_i

e ^dwi •
•

• dwn-idzi *
•

• dzn^i

where

= 'Ey;! + - 2rZWiZi

and the domain of integration in the space of 27i — 2 dimensions is defined

by

ZwiZi < BVZw^ • Zzl

We shall integrate now in regard to variables Zi, Z2 ,
. . . Zn-i for a fixed

system of values Wi, W2 j
. . . Wn^i. To this end we use an orthogonal

transformation

+ Cl, 2^2 + * *
* +

^2 = C2,ll^l + 02,2^2 4- * '
* + C2.n-.irn-l

Zn^l == Cn-iafl + <Jn-l,2?2
* *

' + Cn~l,n-lfn-l

in which the elements of the first column are

__ Wi _
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Defining . . . ^n-i by

Wi = Cl, ill + Ci,2|2 -f-
* ’

* + Ci,n-l|»-l

= C2,l|l + C2,2|2 + • *
' + C2,n-l|7i-l

we shall have |i == tc, I2 = * * * = l«-i = 0. By the properties of

orthogonal transformations

'Lz! == 2f|,

SO that for a fixed system of values ici, ^^?2, • • •
'

2^»-i the domain of

integration in the space of variables f 1, f2, . • • tn-i will be

(5) fi < bVWI
Thus we must first evaluate the integral

J = JJ
. . .

• • ‘ • •
• dfn--l.

If f 1 < 0 no restriction is imposed upon ^2 ,
.. . fn-i; if fi > 0, then

?2 + * ‘
* + fLl

Consequently the result of integration in regard to f2 ,
• . . ?n-i can be

presented thus:

r2^2 1
+ rn-l2)

• ‘ • dfn-l

where the inner integral is extended over the domain

and c is a constant. Making use of formula (1), Sec. 1, the expression of

J reduces to

n—

2

. 2x 2

J ce ^

This has to be multiplied by

1

r"e
Jo Jo

_e!

(2x)
—j(l — r®)

*2
e

2^“’

and integrated over the whole space of the variables wi, Wi, . . .

The resulting expression for P will be
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P = const. — 7 f f . . dWn-1

where

M
^ V2

Now we differentiate in regard to R, reverse the order of integrations,

and make use of formula (2), Sec, 1; the resulting value of dPJdR will

then be expressed as a double integral

^ n—

4

^ = T 2(1 - r^) 2 (1 - jg2)LI f fe-l
l\ Jo Jo

+Rrtu
(tuY~Htdu,

or

dP _ (1 - r^)

dB TrVin - 2)

^00 ^00

Since

- *)•

In the double integral we make transformation to new variables rj

defined by

t = r] = tu.
u

The Jacobian of tj u in regard to rj, being we have

^00 ^ oo ^ 1

J. Jo

5«s+«>)+ifr(«

ir(n

(tuY~Htdu = 5n.
-

1) f”/ = r(n - 1) f”
Jo Jo (c/i^ - Rr)--^^

and so, finally,

dP _ 2

51

n—

1

n— 4 r* *

(1 - r*) 2 (1 _ i22)
2

‘X
dt

0 (ci^^ — Rry~

In case r = 0, that is, when the variables x, y are uncorrelated, we have

a very simple expression of P:
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P = felf
^r(rL^)

In case r 9^ 0 the integral

J

"*

«

0 (

(1 - p2) 2 dp.

dt

(cht —

can still be found in finite form. We have, in fact,

dt ^ 1
_

cht Bv \/l —
~ + arc sin (Rr)

whence

X'
dt y,—(n-~2)

{cht — {n — 2)

and so

! dP-H'
[1 - PV2]-i| jr + arc sin (Pr)

Jt

p

where

VlZ± ( r^r
arc sin (rp)

n— 1

ip (n—2) _ ^2^
2

^ ""
Tr{n - 3)!

When n is an even number, this integral appears in a very simple finite

form, but in case of an odd n certain integrals of a rather complicated

type appear. Besides, the behavior of P for somewhat large n cannot

be easily grasped by using this integral expression for P.

5, Fisher, who was first to discover the rigorous distribution of the

correlation coefficient, called attention to the fact that, setting

thz =

the distribution of z will be nearly normal even for comparatively small

values of n. Let us set thR = co, th^ = r; then P can be expressed thus:

p — ^ ^ r ” chzdtdz

^ J - 00Jo {chtchzcht — sh^shz)^~^

Instead of t it is convenient to introduce a new variable r so that

chtchzch^ — $hi$hz == r^hh{z — f).
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Then

where

_ w — 2 p" /chz^i dz piT“4(l — tY-Ht
cht) [ch{z - ^ pr

^ + r)
^ 2chzch^ ” 2cho)ch^

for all values of z under consideration. Now

l
~ ry-’^dr

^ V^T{n - 1)

\/l pr

and

since

X

V ^(1 — t)” ^dr ^ “x/rrC^ ~ 1)

0 Vl — pr
^ “

V~4(l — rY~^dT

T(n - i)

j:
< j

T”^(l ““ r)^ ^(1 + pr)dr
;o Vl

for 0 < p < 1 as can be easily verified. Consequently

p _ (n — 2)r(n — 1) T"

V^r(n -- f)“ «W ^
'

. Fi
c^(^ + r) ^ 1.

2chwcht 2?i — ij'
0 < ^ < 1 .

As to the integral in this formula, its approximate expression, omitting

terms of the higher order, is:

tH
2n - 3

Thus for somewhat large n the required value of P can be found with

the help of a simple approximate formula.

The various distributions dealt with in this chapter are undoubtedly

of great value when applied to variables which have normal or nearly

normal distribution. Whether they are always used legitimately can

be doubted. At least the '^onus probandi” that the “populations” with

which they deal are even approximately normal rests with the statisticians.

1. Show that

lim
n—» 00

n

C

Kr"

Problems for Solution

2 % ^ 1
,

2

V27rJ - «
du

Htnt: Liapounoff's theorem and Prob. 1, page 332.
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2. With the same assumptions and notations as in Prob. 3, page 336, show that the

distribution function of the quotient

;
i = 1,2, . . . n

F{t) =

n— 4

j. r (i IL.')
^

dr
/n-2y-V^\ n-lj

^ '\/n— 1

VTtin - i)r[^

F{t) =1 if t> \/n 1; Fit) =0 if t < - Vn “ 1.

It is worthy of notice that forn =4 the distribution is uniform.^

3. In two series of observations, samples JCi, X2 ,
. . . Xn and yi, 2/2, .. . 2/»' from

the same normally distributed population (or of the same normally distributed vari-

able) are obtained. Denoting for brevity

a =
aji + ^2 + + Xn

,
2/1 4* 2/2 + • •

• + 2/n'

, g/

n'

find the distribution function of the quotient ('^Student'’)* -^wa.
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APPENDIX I

1. Euler’s Summation Formula. Let f{x) be a function with a

continuous derivative f(x) in an interval (a, h) where a and b > a are

arbitrary real numbers. The notation

n^b

n >a

will be used to designate the sum extended over all integers n which are

>a and S b. It is an important problem to devise means for the approxi-

mate evaluation of the above sum when it contains a considerable number

of terms.

Let [x]j as usual, denote the largest integer contained in a real number

X, so that

X = [x] + 6

where 6, so-called ^Tractional part’’ of x, satisfies the inequalities

0 S e <h
Considered as functions of a continuous variable x, both [rr] and 6 have

discontinuities for integral values of x. The function

p(x) = ^--d = [x]— x + ^

is likewise discontinuous for integral values of x. Besides, it is a periodic

function of x with the period 1 ;
that is, we have

p(x + 1) = p(x)

for any real x. With this notation adopted we have the Showing
important formula:

n

(1) Xf(n) = £f(x)dx + pih)f(b) - p(a)/(a) -
n >o

which is known as ^'Euler’s summation formula.”

Proof. Let k be the least integer >a and I the greatest integer ^6.

The sum in the left member of (1) is, by definition,

m +f(k + i) + • •
• +m

and we must show that this is equal to the right member. To this end

we write first

347
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Jlpix)f{x)dx = jy(x)f'(x)dx + p{x)f {x)dx + ^ j[’'^^p(x)f(x)dx.

j^k

Next, since j is an integer,

j'_^\(x)f'ix)dx = -x + ^fix)dx = JS3l±^l±l} +

X
y+i

f(x)dx

and

2^ p(a:)/'(a:)dx = - 2
j—k w=^+l

On the other hand,

p(x)f'{x)dx = - 1 - x + 0f(x)dx = - p(a)/(a) +

p{x)f'{x)dx = - X + ^S'{P:)dx = + p(6)/(6) + J^/(a;)(i2 ,

SO that finally

{x)dx == —f{k) — f(k + 1)
” • • • — f{l) +

+ Pib)m - p(a)Ka) + jy{x)dx;

whence

n

'^fin) = ^J(x)dx + p(b)f(b) — p{a)f{a) — jy(x)f(x)dx,
n>a

which completes the proof of Euler’s formula.

Corollary 1, The integral

fjpmz = aix)

represents a continuous and periodic function of x with the period 1, For

cr(a; + 1) — cr{x) = piz)dz = J^p{z)dz = J^^(i
— z)dz == 0.

If 0 ^ a; ^1,
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/. G - *)* “

and in general

where 0 is a fractional part of x. Hence, for every real x

0 g a(x) ^

Supposing that/"(^) exists and is continuous in (a, b) and integrating by

parts, we get

£pix)f(x)dx = <r(6)/'(6) - <r{a)f(a) - £<7ix)r{x)dx,

which leads to another form of Euler’s formula:

n

%f(n) = f%)dx + p(b)fih) - p(a)/(a) - cr(?))/'(6) +
n >a

+ a(a)/'(a) + f\(x)rix)dx.
J a

Corollary 2. If f(x) is defined for all a: ^ a and possesses a continuous

derivative throughout the interval (a, + «> ) ;
if, besides, the integral

f^“‘p(x)f'(x)dx

exists, then for a variable limit b we have

n Sb

(2) Xf{n) = C + ffQ,)db + p(6)/(6) + f”pix)fix)dx
n >a

where C is a constant with respect to b.

It suffices to substitute for

rp(pdf(p^)dx
^ Clr

the difference

f/p(x)f(x)dx - £’°p(x)f(x)dx

and separate the terms depending upon b from those involving a.

2, Stirling’s Formtila. Factorials increase with extreme rapidity

and their exact computation soon becomes practically impossible. The

question then naturally arises of finding a convenient approximate
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expression for large factorials, which question is answered by a celebrated

formula usually known as “Stirling's formula/^ although, in the main,

it was established by de Moivre in connection with problems on proba-

bility. De Moivre did not establish the relation to the number

T = 3.14159 . . .

of the constant involved in his formula; it was done by Stirling.

In formula (2) it suffices to take a = f(x) = log x, and replace 6

by an arbitrary integer n to arrive at the remarkable expression

log (1 2 • 3 • • n) = C + (n + ^\ogn - n + ^
—

where C is a constant. For the sake of brevity we shall set

Jn ^

Now

r *p(x)dx ‘’^+^pix)dx
,+ . .

JIn ^ c)n X Jr

and

C'‘+Yx)dz

Jk X
11 _ C*p(u)du

Jo ^

C^p(u)du _
fi u + k

~

= r^ (i y)du r^ (| ~ u)du _ 1 (1 — 2u)Hu
Jo u-{-k "^Ji u + k 2jo {k-\-u){k + l — u)

Hence

«(n) =
IJ/d - 2uyF„iu)du

where

PO

Fr.(u) = 2(fc+.M)(fc + l -u)
h^n

Since

(lb + w)(fc + 1 — m) = h{k + 1) w — vP',

it follo-ws that for 0 < w <

d + tt)(fc + l -u) >k{k + l)

(k + u){k + 1 - w)< (fc + 1)2 < (k + i){k + 1).

Thus for 0 < u < }^
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< Sari
'

k =n
ik(k + 1) n

F„(w) > 2
k — n

{k + |)(fc +1) n + I

Making use of these limits, we find that

"m
"« > 2¥TlX'‘‘

~ * i2(.V i)'

and consequently can set

1

01 (n) =

where

Accordingly

log (1 • 2 .

3

12(n + e)

0 < 0 < |.

n) = C + (’+0 log ~ n +
12(n + B)

The constant C depends in a remarkable way on the number tt.

To show this we start from the well-known expression for tt due to Wallis:

5 - (l

2 2 4 4
3'3'5

2n 2n

i)2n — 1 2n -f

which follows from the infinite product

by taking x = t/2. Since

n-

2 2 4 4

r3‘3‘5
2n 2n

2n — 1 2u -{-

we get from Wallis' formula

On the other hand,

2.4- 6 •

1 [l • 3 • 5 • •

• 2n

(2n - 1) 2n + 1

• 2n 1 1

1 - 3-5 - • (2n-l)^

2-4-6---2n = 2’‘-l-2-3---'n

1.3-5 ••• (2n-l)
l-2-3..-2n

2" • 1 • 2 • 3 • n
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so that

(22“(1 . 2 • 3 • • n)^

\
1-2-3 • • • 2n

Vtt = hm
I ^ ^ 2

or, taking logarithms

log \/r = lim [2?^ log 2 + 2 log (1 • 2 • 3 • •
• n) —

— log (1 • 2 • 3 • • • 2n) ~ I log n ]

But, neglecting infinitesimals,

log (1 • 2 • 3 • • • n) = C + (^ + i) log n — n

log (1 • 2 • 3 • • • 2n) = C + (2n + |) log 2n 2n

whence

lim [2n log 2+21og(l‘2-3--*n) —
— log (1 • 2 • 3 • • • 2n) ““ I log n] = C ”” i log 2.

Thus

logVTT = C — i log 2, C = log \/27r

and finally

(3) log (1 • 2 * 3 • • • n) = log '\/2nr + log n - n +

'^I2{n + ey

This is equivalent to two inequalities

^2'irn n'^e~^

which show that for indefinitely increasing n

lim == = 1.

V 2Trn

This result is commonly known as Stirling's formula.

For a finite n we have

0<»<2

where

The expression

1 • 2 • 3 • • • n = \/2TnnPe'^ •

i2(« + i)^ < li^'
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is thus an approximate value of the factorial 1 • 2 • 3 • • • n for large n
in the sense that the ratio of both is near to 1 ;

that is, the relative error is

small. On the contrary, the absolute error will be arbitrarily large for

large n, but this is irrelevant when Stirling's approximation is applied

to quotients of factorials.

In this connection it is useful to derive two further inequalities.

Let m < n; we have, then,

^ can-—

1

- F.(u) = 2
k— m

{k + u)ik + 1 -u)’

and further, supposing 0 < u <

k^n— 1

F^{u) - Fn{u) < 2
& = n —

1

k{k + 1) w. n

Fm{u) - F„(it) > 2 1

k==m
(jfc i) (^ + -f) w +* i ^ + I

Hence,

«(m) - a,(n) <^ «(m) - a,(n) > ~ l2(^)
and, if Z is a third arbitrary positive integer,

“(^) + > 12(m +I) + 12(1 +T) 12(nTl)'

3. Some Definite Integrals. The value of the important definite

integral

/; e-^^dt

can be found in various ways. One of the simplest is the following: Let

in general where n is an arbitrary integer ^ 0. Integrating by parts one

can easily establish the recurrence relation

1
Jn =

2
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whence

, 1 . 3 • 5 • •
• (2m - 1) ^

Jam = Jo

1-2-3 m
^2m+l —

On the other hand,

+ 2X/„ + - Jq"
e-n-Kt + \ydl,

which shows that

Jn+J + 2\Jn + > 0

for all real X. Hence, the roots of the polynomial in the left member are

imaginary, and this implies

Ji < Jn^lJn~l‘

Taking n — 2m and n == 2m + 1 and using the preceding expression

for J2m and J2m+i, we find

2-4-6---2m 1 ^ T ^ 2-4-6*--2m 1

1 .
3

.

5

. .
. (2m -- 1)

^ ^ 1 • 3 .

5

. .
. (2m ~ 1)

But

2 4 • 6 • • • 2m 1 /-

mi^ 1 3 • 5 • .
• (2m - 1)

~

hence

Jo —

Here substituting ^ = \/aUj where a is a positive parameter, we get

J. - Wi-
As a generalization of the last integral we may consider the following one:

V = cos budu.

The simplest way to find the value of this integral is to take the derivative

6"^^' sin hu • udu

and transform the right member by partial integration. The result is
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dV
db ^Of

V

or

diVe^^) = 0
,

6*

whence

V = Ce^^.

To determine the constant C, take 6 =0; then

1

so that finally

0 . - I'e-du -

I g~au2
QQQ hudu

The equivalent form of this integral is as follows:

r cos budu
C“ Hr --= I = J-e
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METHOD OF MOMENTS AND ITS APPLICATIONS

1, Introductory Remarks. To prove the fundamental limit theorem

Tshebysheff devised an ingenious method, known as the method of

moments,’^ which later was completed and simplified by one of the most

prominent among Tshebysheff’s disciples, the late Markoiff. The
simplicity and elegance inherent in this method of moments make it

advisable to present in this Appendix a brief exposition of it.

The distribution of a mass spread over a given interval (a, b) may be

characterized by a never decreasing function <p{x)j defined in (a, b)

and varying from (p(a) = 0 to <p(b) = mo, where mo is the total mass con-

tained in (a, b). Since <p(x) is never decreasing, for any particular point

Xqj both the limits

lim <p(xo — e) = (p(xQ — 0)

lim <p{xo + €) = <p{xo + 0)

exist when a positive number e tends to 0. Evidently

(P(Xq — 0) ^ (p(Xo) ^ <p(xo + 0).

If

<p(xo - 0) = (p(xo + 0) = (p(xo),

then xo is a “point of continuity’^ of ^(x). In case

^0 + 0) > <p(xo — 0),

Xo is a point of discontinuity of <p(x), and the positive difference

<p(xo + 0) ~ (p(xo — 0)

may be considered as a mass concentrated at the point Xo. In all cases

^(xo — 0) is the total mass on the segment (a, xo) excluding the end point

Xo, whereas + 0) is the mass spread over the same segment including

the point xo.

The points of discontinuity, if there are any, form an enumerable set,

whence it follows that in any part of the interval (a, b) there are points of

continuity.

If for any sufficiently small positive e

<p(xo + e) > <p(xo — e).

Xo is called a “point of increase” of <p(x). There is at least one point of

increase and there might be infinitely many. For instance, if

356
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<p{x) =0 for a ^ X S c

(fix) = mo for c < X Sb,

then c is the only point of increase. On the other hand, for

/ s
X — a

<p{x) = moT
0 — (X

every point of the interval (a, h) is a point of increase. In case of a

finite number of points of increase the whole mass is concentrated in

these points and the distribution function <p{x) is a step function with a

finite number of steps.

Stieltjes^ integrals

J^d(p(x) = mo, J\d(p{x) == mi, • •

• J^x^d<p(x) = m,-

represent respectively the whole mass mo and its moments about the

origin of the order 1, 2, . . . When the distribution function (p(x)

is given, moments mo, mi, m2 ,
. . . rrii (provided they exist) are deter-

mined. If, however, these moments are given and are known to originate

in a certain distribution of a mass over (a, 6), the question may be raised

with what error the mass spread over an interval (a, x) can be determined

by these data? In other words, given mo, mi, m 2 ,
. . . m^, what are the

precise upper and low'-er bounds of a mass spread over an interval (a, x) ?

Such is the question raised by Tshebysheff in a short but important article

“Sur les valeurs limites des integrales” (1874).^ The results contained

in this article, including very remarkable inequalities which indeed are of

fundamental importance, are given without proof. The first proof of

these results and the complete solution of the question raised by Tsheby-

sheff was given by Markoff in his eminent thesis ^^On some applications

of algebraic continued fractions’’ (St. Petersburg, 1884), written in

Russian and therefore comparatively little known.

Suppose that pi is the limit of the error with which we can evaluate the

mass belonging to the interval (a, x) or, which is almost the same, the

value of ip{x)y when moments mo, mi, m2,
. . . m£ ai^ given. If, with i

tending to infinity, pi tends to 0 for any given x, then the distribution

function (p{x) will be completely determined by giving all the moments

mo, mi, m2 ,
....

One case of this kind, that in which

,
1 . 3 * 5 . •

. (2fc - 1)
mo = 1, m%h — 2* ’ = U

1 Jour. UovmUe, Ser. 2, T. XIX, 1874.
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was considered by Tshebysheff in a later paper, ^‘Sur deux theoremes

relatifs aux probabilit6s’^ (1887)^ devoted to the application of his

method to the proof of the limit theorem under certain rather general

conditions. The success of this proof is due to the fact that moments,

as given above, uniquely determine the normal distribution

1

<p{x) =
I

V7rJ-«,

of the mass 1 over the infinite interval (
— oo, +oo).

After these preliminary remarks and before proceeding to an orderly

exposition of the method of moments, it is advisable to devote a few pages

to continued fractions associated with power series, for continued frac-

tions are the natural tools in questions of the kind we shall consider.

2. Continued Fractions Associated with Power Series. Let

=^' + ^! + ^!+ • • •
; (^1^0)

be a power series arranged according to decreasing powers of z where the

smallest exponent oli is positive. We consider this power series from a

purely formal point of view merely as a means to form a sequence of

rational fractions

_L Ai, Ai Aij

and we need not be concerned about its convergence.

Evidently l/<l>{z) can again be expanded into power series, arranged

according to decreasing powers of z. Let its integral part, containing

non-negative powers of Zj be denoted by qi{z)^ and let the fractional part

*

containing negative powers of z, be denoted by —<^ 1 (21), so that

~ = 3i(2) - 4>x{z).

In the same way

1

^i{z)

can be represented thus:

^ Oeuvres completes de P. L. Tshebysheff, Tome 2, p. 482.
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where q%{z) is a polynomial and

^ zy^ ‘ zy^

a power series containing only negative powers of z. Further, we shall

have

^ = qz{z) - 4>s{z)

with a certain polynomial q^iz) and a power series

^3 (^) + • • •

containing negative powers of z, and so on. Thus we are led to consider a

continued fraction (finite or infinite)

associated with <i)(z) in the sense that the formal expansion of

Qi
-

into a power series will reproduce exactly 4>(z). The continued fraction

(1) is again considered from a purely formal standpoint as a mere abbre-

viation of the sequence of its convergents

Pi ^ 1. Pz ^ 1 1 • h-l 1

Qi Qi' Qi gi--’ Qi Si-- 1
q, q,

- -

The polynomials

Pi, Pi, Pi,

Qi, Qi, Qi, •

can be found step by step by the recurrence relations

(2)
Pi - qiPi-i - Pi-i\i = 2, 3, 4, . . .

Qi =
Pi = 1, Po = 0

Qi = 21, Qo = 1

!
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from which the following identical relation follows:

(3) Pi{z)Qi^.{z) - Qi{z)Pi-iiz) = 1,

showing that all fractions

Pi(^)

Qi{z)

are irreducible. Evidently degrees of consecutive denominators of

convergents form an increasing sequence and the degree of Qi(z) is at

least i. Since

we can write

ftfa-fl ““ Pj-l

Qtfe+1 — (l>i+i(z)) — Qi^i

^ Pi+i — Pi<j>i^i(z)

Qi+1 — Qi<l>i-{-l{z)

r / \ _ Pj+l Pi<tH-hl{z)

Qi^i - Qick^iiz)

in the sense that the formal development of the right-hand member is

identical with (j)(z). By virtue of relation (3)

Qi

The degree of Qi being X,- and that of Qt+i being Xt+i, the expansion of

QiCQi+i Qt<^t+i)

in a series of descending powers of z begins with the power
Hence,

<p(z) -
Qi

M
jgX»+X»+i + • • •

and, since Xf+i ^ Xj + 1, the expansion of

begins with a term of the order 2\i + 1 in 1/z at least. This property

characterizes the convergents Pi/Qi completely. For let P/Q be a
rational fraction whose denominator is of the nth degree and such that

in the expansion of

<i>{z)
- P
Q
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the lowest term is of the order 2n + 1 in l/z at least. ThenP/Q coincides

with one of the convergents to the continued fraction (1). Let i be
determined by the condition

X,- g n < X,+i.

Then

<f>(z) -
Pi

Qi

M
0\»‘4‘X»+i + •

P _ N
Q 2^"+!

whence in the expansion of

P_Pi
Q Qi

the lowest term will be of degree 2n + 1 or Xi + Xi+i in 1 /z. Hence, the

degree of

PQi - PiQ

in z is not greater than both the numbers

Xi — n — 1 and n — Xi+]

which are both negative while

PQi - PiQ

is a polynomial. Hence, identically,

PQi - PiQ = 0

or

P ^Pi
Q Qi

which proves the statement.

3. Continued Fraction Associated with
JaZ - X

Let <p{x) be a never

decreasing function characterizing the distribution of a mass over an

interval (a, h). The moments of this distribution up to the moment of

the order 2n are represented by integrals

mo = J^d<p{x)j . mi = J^xd<p(x)y

m2 = j^xH<p{x), • • • m2n — J^x^^d(p(x),
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Let

Ao == mo; Ai
momi
mim2 ;

A2 =
momim2
mim2mz ; An

mom I

mim^
mn
mn+i

lm„mn+i * • • m2n

If <p{x) has not less than n + 1 points of increase, we must have

Ao > 0, Ai > 0,
• • • An > 0,

and conversely, if these inequalities are satisfied, ip{x) has at least n + 1

points of increase. To prove this, consider the quadratic form

^ + tlX + - •
• + tnX^)H(p{x)

in n + 1 variables Uj ii, . . . tn» Evidently

(l>
== (i, j == 0, 1, 2, . . . n)

so that An is the determinant of <l> and Ao, Ai, . . . An_i its principal

minors. The form <f) cannot vanish unless to = ti => * • = i^n = 0.

For if X = ? is a point of increase and <?!> = 0, we must have also

+ * •
• + tnX^Yd(p{x) = 0

for an arbitrary positive €, whence by the mean value theorem

(io + flT? + • * * + d(p[x) = 0(| — €<7;<^+€)

or

to +tnj +• *
• + tnrj^ = 0

because

> 0.

Letting e converge to 0, we conclude

fo + ? + • •
• + tn^'^ “ 0

at any point of increase. Since there are at least n + 1 points of increase

the equation

to +tix + ' •
• + tnX'^ =0

would have at least n + 1 roots and that necessitates

to tx • . . —
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Hence, the quadratic form <j)j which is never negative, can vanish

only if all its variables vanish; that is, ^ is a definite positive form. Its

determinant An and all its principal minors An-i, An-2 ,
. . . Ao must be

positive, which proves the first statement.

Suppose the conditions

Ao > 0, Ai > 0, . . . An > 0

satisfied and let <p(x) have s < n + 1 points of increase. Then the

integral representing
<f> reduces to a finite sum

^ = Pi(to + ^1^3 4- . . .

-f- + P2(to + fl^2 + • •
• + +

+ • *
• + psito + -f-

• •
• +

denoting by pi, p2 ,
. . . Ps masses concentrated in the s points of

increase ^2 ,
• . . Now, since s ^ n constants to, ^i, . . . tn, not

all zero, can be determined by the system of equations

to + +
^0 + + + in^2 “ ^

to + + + = 0.

Thus (i>
vanishes when not all variables vanish; hence, its determinant

An = 0, contrary to hypothesis.

From now on we shall assume that <p(x) has at least n + 1 points of

increase. The integral

^U<p(x)
rb

J a

can be expanded into a formal power series of 1/z, thus

f
d(p(x) __ mp mi

f
^2

t

^ z
I

m2n
j»" linn "•

and this power series can be converted into a continued fraction as

explained in Sec. 2. Let

Pi P2 fn Pn+1

Ql Q2 Qn Qn+1

be the first n + 1 convergents to that continued fraction. I say that the

degrees of their denominators are, respectively, 1, 2, 3, . . . n + 1*

Since these degrees form an increasing sequence, it suffices to show that

there exists a convergent with the denominator of a given degree

s ^ n + 1.

This convergent P/Q is completely determined by the condition that in a

formal expansion of the difference
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_ P
Ja S - X Q

into a power series of 1/z, terms involving 1/z, 1/2^ . . . l/z“* are

absent. This is the same as to say that in the expansion of

there are no terms involving l/z, l/z2, . . . l/x*. The preceding expres-

sion can be written thus;

pQ(z)
QMd,f,{x) - P(z)

Ja ^ X Ja ^ ^
+

Since

£
'Q(z) - Q(x)

Z X
d<p(x) — P(z)

is a polynomial in it must vanish identically. That gives

(4) pw -
nJa ^

To determine Q{z) we must express the conditions that in the expansion of

£
Qix)d<p(x)

terms in l/2f, . . , 1/^ vanish. These conditions are equivalent to

s relations

(5) J^Q(x)d<p(x) = 0, j*^xQ(x)d<p(x) = 0,
• •

• J^x^'^'^Q{x)d(p{x) =0,

which in turn amount to the single requirement that

(6) B(x)Q{x)d<p(x) =0

for an arbitrary polynomial 6{x) of degree g s — 1.

Conversely, if there exists a polynomial Q{z) of degree s satisfying con-

ditions (5), and P(z) is determined by equation (4), then P(z)/Q{z) is a

convergent whose denominator is of degree s. For then the expansion of

rd<p(x) Pjz)

JaZ — X Q{Z)

lacks the terms in 1/2, l/z^, . . . \lz^.
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Let

Q(2) — 1

Then equations (5) become

WqZo -f- ”f“ ^2^2 *4- • • * ftls—ils—l Hr == 0

mi?o + ^2^1 +• rrizh -f-
• • . 4" Msls^i + m^+i = 0

TUs^iIq 4" Mall 4" W^»+lZ2 4" • * • *4“ ^2s—2ia—l H" ^2s-l =

This system of linear equations determines completely the coefficients

Iq, h, , . , la-i since its determinant A^-i > 0.

The existence of a convergent with the denominator of degree

s ^ n 4- 1

being established, it follows that the denominator of the sth convergent

Ps/Qs is exactly of degree s. The denominator Qs is determined, except

for a constant factor, and can be presented in the form:

\ z •

mo mim2 • • • rria

A,_i
mi m^mz • • • m^+i

Ma-imama+l ‘ ‘ • m2s-i*

A remarkable result follows from equation (6) by taking Q = Qs and

0 = Qa'] namely.

(7)

while

J^QsQm' dipix) =0 if s 7^ s'

£Qld<p{x) >0 (s ^ n).

In the general relation

Qs ” 1 Q«—

2

the polynomial must be of the first degree

qa == aaZ + iSa,

which shows that the continued fraction associated with

£
dv(x)

z — X
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has the form

aiZ +
a^Z + ^2

0:32; -f-
—

The next question is, how to determine the constants and Multi-

plying both members of the equation

Qs = {oLs^ + Ps)Qs-i — Qb-2 (s ^ 2)

by Qs-^2d<piz), integrating between limits a and h, and taking into account

(7), we get

0 == OisJ*^zQs-^lQa—2d(p(z') Qs--2d^C^}

•

On the other hand, the highest terms in Qs-i and Qs-2 are

aia^ aia2 as-2^^'

Hence,

zQs^2 = —Qs^i + ^
as-i

where ^ is a polynomial of degree — 2. Referring to equation (6),

we have

f zQ,-2Q.~id<piz) =— r Qt-i^<p{z)
Ja CKs—

1Ja

and consequently

(8)

CCs

CCs-l

£Q!_,d<p(z)

Suppose that the following moments are given: mo, mi, . . . m2n; how
many of the coefficients as can be found? Evidently ai = 1/mo. Fur-

thermore, Qo = 1 and Qi is completely determined given mo and mi.

Relation (8) determines 0:2, and Q2 will be completely determined given

mo, mi, m2, m3. The same relation again determines as, and Q3 will be

determined given mo, mi, . . . ms. Proceeding in the same way, we
conclude that, given mo, mi, m2, . . . m2n, all the polynomials

Qoj Qh Q2, Qn

as well as constants

oil, az, az, . . . On^i
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can be determined. It is important to note that all these constants are

positive.

Proceeding in a similar manner, the following expression can be found

It follows that constants

rzQ!-id<p(z)

/3l, I32, . . .

are determined by our data, but not Pn+i- For if s = w + 1, the integral

can be expressed as a linear function of mo, mi, . , . m2n+i with known
coefficients. But m2n4-i is not included among our data; hence, /S^+i

cannot be determined.

4, Properties of Polynomials Qs. Theorem. Roots of the equation

Qs{z) =0 (s ^ n)

are real, simple, and contained within the interval (a, h )

.

Proof. Let Qs{z) change its sign r < s times when z passes through

points Zi, . Zr contained strictly within (a, h). Setting

B{z) {z — zf){z - zf) ' ‘
^ {z — Zr)

the product

Biz)Q^{z)

does not change its sign when z increases from a to h. However,

fyz)Q.{z)d<p(z) = 0
,

and this necessitates that

0(z)Qs(z)

or Qs(^) vanishes in all points of increase of <p{z). But this is impossible,

since by hypothesis there are at least n + 1 points of increase, whereas

the degree s of Qs does not exceed n. Consequently, Qs{z) changes its

sign in the interval (a, b) exactly s times and has all its roots real, simple,

and located within (a, b).

It follows from this theorem that the convergent
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can be resolved into a sum of simple fractions as follows

:

An
(9)

Pni^) Al
,

JI2
= 1 T d + +

Quiz) Z -- Zi Z — Z2
'

' Z — Zn

where Zi, 2:2 ,
.. . Zn are roots of the equation Qn{z) = 0 and in general

A P
^ ”

QLizic)

The right member of (9) can be expanded into power series of 1/z, the

coeflficient of 1/z^ being

ct — X

By the property of convergents we must have the following equations:

n

Aa = mo
a = l

n

^ AaZa = mi

2) AolZ^c!'^^ = m2n-.i.

These equations can be condensed into one,

n

(10) = JV(2)d^(z)
a= l

which should hold for any polynomial T{^ of degree — 1.

Let us take for T{z) a polynomial of degree 2n — 2:

Then

T{zo) =1, =0 if ^9^0.

and consequently, by virtue of equation (10),

= FT 7
— > 0.

Jo L(2 - 2«)Q:(Zc«) J

Thus constants J. 1 ,
A 2 ,

. . . A „ are all positive, which shows that
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has the same sign as Q'^{zh). Now in the sequence

Q'fe), . . . Qiiz.)

any two consecutive terms are of opposite signs. The same being true of

the sequence

Pn{Zl), PruiZi), . . . Pn{Zn),

it follows that the roots of P„(2) are all simple, real, and located in the

intervals

(21, Z2)
j (22, 23) ,

, , , (Zti—1, 271).

Finally, we shall prove the following theorem:

Theorem. For any real x

- QLi(^)Q„(x)

is a positive number.

Proof. From the relations

Qs{z) = {a,z + |S,)Q,_i(2) - Q,-.i{z)

Qe(x) = {aa + ^s)Qs-\{x) — Q^-iix)

it follows that

^ ^

,
Q,-i{z)Q,^i.{x) — Q,-i{x)Q^i{z)+

whence, taking 5 = 1, 2, 3, . . . n and adding results,

Qn{z)Qn-~l{x) - Qn{x)Qn-l{z)

Z X

n

GLsQ,8—\ (^)Qs— 1 (^) •

s = l

It Buflices now to take z = x to arrive at the identity

Q^{x)Qn~iix) - Q'^iix)Qnix) = ^a,Qs^i{xy.
5 = 1

Since Qo = 1 and as > 0, it is evident that

Qn{x)Qr,~^l{x) - Qn-l{x)Qn{x) > 0

for every real x.

6. Equivalent Point Distributions. If the whole mass can be con-

centrated in a finite number of points so as to produce the same I first

moments as a given distribution, we have an equivalent point distribu-
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tion” in respect to the I first moments. In what follows we shall suppose

that the whole mass is spread over an infinite interval — oo
,

co and that

the given moments, originating in a distribution with at least n + 1

points of increase, are

mo, mi, m2 ,
. . . m2n.

The question is: Is it possible to find an equivalent point distribution

where the whole mass is concentrated in n + 1 points? Let the unknown
points be

kl, ^2, . . . ^n-hl

and the masses concentrated in them

At, A2, . . A n-f-l*

Evidently the question will be answered in the affirmative if the system

of 2n + 1 equations

u)

71+ 1

- mo
o:=:l

n+1

^ = mi
a= l

71+ 1

Aoc^S. = m2

a= l

n+1

2^ Acc^l^ = m2n
a = l

can be satisfied by real numbers |i, • . . ?n+i; ^4.1,42,... An+i,

the last n + 1 numbers being 'positive. The number of unknowns being

greater by one unit than the number of equations, we can introduce the

additional requirement that one of the numbers fi, ^2 ,
. . . ^n+i should

be equal to a given real number v. The system {A) may be replaced by
the single requirement that the equation

n+ l

(11 )
%AaT{^.) = fLT(x)d^(x)
<x = l

shall hold for any polynomial T{x) of degree ^2n. Let Q{x) he the

polynomial of degree n + l having roots ?i, ^2 ,
. . . ^n+i and let 6{x) be

an arbitrary polynomial of degree — 1. Then we can apply equation

(11) to

T{x) = 6 (x)Q{x),
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Since Q(^a) — 0, we shall have

(12) f”j(x)Q(x)d<p(x) = 0

for an arbitrary polynomial dix) of degree - 1. Presently we shall

see that requirement (12) together with Q{v) = 0 determines Q(x), save
for a constant factor if

Qv(v) 9^ 0.

Dividing Q{x) by Qn{x), we have identically

Q{x) == {\x + lx)Qn{x) + Rn-.l(x)

where Rn^i{x) is a polynomial of degree — 1. If e(x) is an arbi-

trary polynomial of degree — 2,

(\x +
will be of degree — 1. Hence

J^^O^X + fx)e(x)Qn{x)d<p(x) = 0

by (6), and (12) shows that

d(x)Bn-^iix)d<p{x) = 0

for an arbitrary polynomial 6(x) of degree Sn — 2. The last req\iire-

ment shows that Rn-i(x) differs from Qn~^i(x) by a constant factor. Since

the highest coejficient in Q{x) is arbitrary, we can set

Rn—li(x^ == Qn—l(x)*

In the equation

Q(x) = (Xx + M)Qn(x) — Qn-i(x)

it remains to determine constants X and ju- Multiplying both members by

Qn-^i(x)d<p(x) and integrating between — oo and oo
^
we get

\J'^^xQ„-iQ„dip(x) = J'^^QLidtpCx)

But

— r Qld<p{x) = r Qt-id(p{x).
<Xn^ — 00 • 00

f_ „Qi-id<p(x)
^^

f_\Q^J<pix)
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whence

The equation

«n+l.

(
Q{x) = (

an+i{x — v)

0 = Q(z;) == {an^lV + li)Qn{v) — Qn-.l{v)

serves to determine ix if Qniv) ^ 0. The final expression of Q(x) will be

)s.w -

Owing to recurrence relations

Q2 == ioc2^ + /52)Qi “ Qo] Qz = (ccz^ + ^3)^2 QiJ • * '

Qn ~ (,OLnX “h ^n^Qn-—! Qn—2}

it is evident that

Q, Qn, Qn-1, . . . Ql, Qo = 1

in a Sturm series. For a; = — c©
^
it contains n + 1 variations and for

X = <x) only permanences. It follows that the equation

Q(rr) = 0

has exactly n + 1 distinct real roots and among them v. Thus, if the

problem is solvable, the numbers ^i, ^2 ,
. . . In+i are determined as

roots of

Q{x) = 0.

Furthermore, all unknowns Aa will be positive. In fact, from equation

(11) it follows that

Aa = Q{x)

(x ^a)Q^{^a)
> 0.

Now we must show that constants Aa can actually be determined so as

to satisfy equations (A). To this end let

Fix) /: , x — z
d(p{z) = an+-l{x — + Qn-liv)

Pn{x) — Pn-l{x).

Then

Q{z)dip{z)

X — Z

and, on account of (12), the expansion of the right member into power

series of 1/x lacks the terms in. 1/Xj 1/x^, . . . 1/x'^. Hence, the expan-

sion of

P(x)

Q(x)
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lacks the terms in 1/x, \/x^, . . . that is,

P(3^) ^ 1 j_ . . .
I .

Q(a:) X
-j- . . . .

On the other hand, resolving in simple fractions,

P(x^ 1 t -^2 I

I

-4. 71+1

Q{x) " X - x~- ^2
‘

‘ “k
a; ~ ^n+i*

Expanding the right member into power series of 1/x and comparing

with the preceding expansion, we obtain the system (A). By the previous

remark all constants Aa are positive. Thus, there exists a point distribu-

tion in which masses concentrated in n + 1 points produce moments

mo, mi, . . . man. One of these points v may be taken arbitrarily, with

the condition

Qn(p) 7^ 0

being observed, however.

6. Tshebysheff’s Inequalities. In a note referred to in the introduc-

tion Tshebysheff made known certain inequalities of the utmost impor-

tance for the theory we are concerned with. The first very ingenious

proof of them was given by Markoff in 1884 and, by a remarkable

coincidence, the same proof was rediscovered almost at the same time

by Stieltjes. A few years later, Stieltjes found another totally different

proof; and it is this second proof that we shall follow.

Let <p{x) be a distribution function of a mass spread over the interval

— CO
^

00 . Supposing that a moment of the order i,

x^d<p(x) = mi,

exists, we shall show first that

lim P{mo — <p(l)) = 0

lim — = 0

when I tends to -h • For

^\^d<p{x) ^ pj"d<p{x) = -m
or

Similarly

i^(mo — ^(0) S x^d(p(x),

^^x^d(p{x) ^ ~ l^<p{—T)
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or

Now both integrals

’^x^d(p(x) and ^^x^d<p(x)

converge to 0 as Z tends to + co
;
whence both statements follow immedi-

ately. Integrating by parts, we have

j*^x^d<p(x) = l^[<p(l) — mo] — tj^\<p(x) — mo]x^~'^dx

J*^^x^d<p(x') = (— 1)^“^ZV(~0 — iJ*_^x^'^^<p(x)dXj

whence, letting Z converge to

Mi = jcHcp{x) = — mo]a;^“^cZx — ^x^'~^(p{x)dx.

If the same mass mo, with the same moment m^, is spread according to

the law characterized by the function yp{x)j we shall have

/
OO . 80 /*0

^xH\j/{x) = — — moja^'^^cZo; — ij
^
jc^'^^(x)dx,

whence

(13) “ = 0.

Suppose the moments

rrioj mi, m2, . . . m2n

of the distribution characterized by (p(x) are known. Provided <p(x)

has at least n + 1 points of increase, there exists an equivalent point

distribution, defined in Sec. 5 and characterized by the step function

\l/(x) which can be defined as follows:

011 for — =0 < a; <
11 for VVII

jP(x) = Ai + A2 for eoVBVII

\l/{x) = Ai + A2 + • • *

-f- An for In ^ a: < ^n+l

4^(x) = Ai "h A 2 + * for ?n+l ^ a? < + 00

provided roots ^ 1 , ^2 ,
• • ?n+i of the equation Q{x) = 0 are arranged

in an increasing order of magnitude.
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Equation (13) will hold for f = 1, 2, 3, . . . 2n or, which is the
same, the equation

(14) ^d{x)[ip(x) — 4/{xy\dz = 0

will hold for an arbitrary polynomial e{x) of degree — 1. The
function

hix) = <p{x) — 4/{x)

in general has ordinary discontinuities. We can prove now that Jiix), if

not identically equal to 0 at all points of continuity, changes its sign at

least 2n times. ^ Suppose, on the contrary, that it changes sign r < 2n
times; namely, at the points

Taking

e(x) = (x - ai){x — a^) ‘
’ (x - a^),

equation (14) will be satisfied, while the integrand

6{x)h{x),

if not 0, will be of the same sign, for example, positive. Let J be any

point of continuity of h(x). If ^ (i = 1, 2, . . . r) then h{ai) = 0

since h{x) changes sign at If $ does not coincide with any one of the

numbers ai, a^, * » • then for an arbitrarily small positive e we must

have

f^^^6(x)h(x)dx = 0 .

But by continuity

d{x)h(x)

remains in the interval ($ — e, J + e) for sufficiently small e above a

certain positive number unless h{^) = 0. Thus, if h{x) does not vanish

at all points of continuity (in which case (p{x) and ^(x) do not differ

essentially), it must change sign at least 2n times. Let us see now where

the change of sign can occur. In the intervals

— 00
,

and + 00

function f(x) is said to change sign once in (a, h) if in this interval there

exists a point or points c such that, for instance, f(x) ^ 0 in (a, c) and f(x) ^ 0 in

(c, 6), equality signs not holding throughout the respective intervals. The change

of sign occurs n times if (a, h) can be divided in n intervals in which f(z) changes

sign once.
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(p{x) — 'ip{x) evidently cannot change sign. Within each of the intervals

1 ;

there can be at most one change of sign, since \p(x) remains constant

there, and <p(x) can only increase. The sign may change also at the

points of discontinuity of ^(x); that is, at the points {i, . ?n+i.

Altogether, <p(x) — 4/{x) cannot change sign more than 2n 1 times

and not less than 2n times.

Since ^p{x) = 0 so far as and (p{^i — e) is not negative for

positive €, we must have

— «)
— — e) ^ 0.

Also \p{x) == mo for x > ^n+i and <p(x) ^ mo, so that

<p(^n+l + e) — + e) go.

At first let us suppose

— e) — — e) > 0, (p(^n+i + e) — \p{^n+i + e) <0.

In this case <p(x) — ^l/(x) must change sign an odd number of times; that is,

not less than 2n + 1 times. Since this cannot happen more than 2n + 1

times, the number of times (p{x) — 4^(x) changes its sign must be exactly

2n + 1, These changes occur once within each interval

and in each of the points ^i, $2 ,
. . • fn+i. When the change of sign

occurs in the interval where \l/{x) remains constant, because (p{x)

never decreases, we must have for sufficiently small e

(15) - e) - - €) > 0.

But the sign changes in passing the point therefore,

(16) <p{^i + e) - + 6) < 0.

The equalities

<p(^i — e) — ^(^1 — e) =0, <p(^n+i + €) — + e) = 0

cannot both hold for all sufficiently small e. For then there would not

be a change of sign at and ^n+i, so that the number of changes would
not be greater than 2n — 1 which is impossible. Therefore, let

<p(^i — e) — ^($1 — e) == 0 and <p(^n+i + e) — + e) < 0.

Then there will be exactly 2n changes of sign: one in each of the intervals
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and in each of the points ^2 ,
. . . ?n+i. The inequalities (15) and

(16) would hold for i ^ 2, but

— e) — — e) = 0, (p(^i + e) — ^(Ji + e) < 0

for all sufficiently small e.

Now let

^(?w+i + e) — + e) = 0 and <p{^i — e) — ^(Ji — e) > 0

for all sufficiently small positive e. Then there will be exactly 2n changes

of sign: In each of the points gi, §2 ,
. . . and in each of the n intervals

The inequalities (15) and (16) will again hold for i S n. but

— e) — ^(J«+i — e) > 0 and ^($7i+i + «) — + e) = 0

for all sufficiently small €. Letting € converge to 0, we shall have

<p{ii - 0) ^ - 0)

^(^^ + 0) ^ + 0)

for i = 1, 2, 3, . , . n + 1 in all cases. Then, since

^(St) S —
0); ^ <p{ki + 0),

we shall have also

<p{k^) ^ i'iki
- 0)

cpiki) ^ i'iki + 0)^^^

or, taking into consideration the definition of the function yp{x)

i-l

i=i

PM
Q'ib)

J=1

Pi^l)

Q'ib)

These are the inequalities to which Tshebysheff’s name is justly

attached. For a particular root = v they can be written thus

:

<piv) ^ 2̂
1 <V

<piv) ^ 2

PM
Q'iii)

EM(17)
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with the evident meaning of the extent of summations. Another, less

explicit, form of the same inequalities is

Tip) S ^{v - 0)

<pip) = ’’pip "
1
“ 0)-

As to P{x) and Q{x), they can be taken in the form:

P(x) = [an+l{x — v)Q„(v) + Qn-l(v)]Pn(x) - Qniv)Pn-lix)

Q{x) = [an+lix — v)Qn{v) + Qn-lW]Qn(x) — Qn{v)Qn-l{x)

.

Thus far we have assumed that v was different from any root of the

equation

Qn(x) = 0,

but all the results hold, even if

Q„{v) = 0.

To prove this, we note first that when a variable v approaches a root J of

Qn(x), one root of Q{x) (either |i or |„+i) tends to — <» or + oo, while the

remaining n roots approach the n roots xi, Xi, . . . Xn of the equation

Q„(x) = 0.

If tends to negative infinity, it is easy to see that

Pill)

Q'ih)

tends to 0. In this case the other quotients

Pill)

Q'ih)

tend respectively to

P„(Xl) Pn(X2)

Q'^ixi)’ Q'^ix^y
" '

If In+i tends to positive infinity the quotients

approach respectively

Pih)

.

Q'ih)’
1

,
2

, n

Pnjxi)
_ j .. no

Q'l^^iY
" ’ ' ’ n.

Pjln+l)

Q'ih+i)

while
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tends to 0. Now take y = | - « and v = ^ + ein (17) and let the posi-

tive number e converge to 0. Taking into account the preceding remarks,
we find in the limit

whence again

<p(^ - 0)

+ 0)

> 'S^Pnixi)

XI

< '^ Pr.jxi)

<pii) ^ 2 Pnixi)

Q'niXl)
Xi<^

^(9 ^ 2 Pn{Xl)

Q'niXlY

But these inequalities follow directly from (17) by taking v =
Since

Hv + 0) -Hv-O)

it follows from inequalities (18) that

0 g <p{v) - ^{v - 0) g

On the other hand, one easily finds that

Pjv) 1

Q'iv) an+iQn{vy + Q'n{v)Qn-i{v) — QLl(«')Qn(«')

But referring to the end of Sec. 4,

n

Qn{t>)Qn-l(v) - Qn-l(v)Q^{v) = ^0:,Qs_i(y)^

whence

an+lQn(vy + Q'„iv)Qn-i{v) - Q'„^i{v)Q„iv) = Q'n+MQniv) - Q'MQn+l(v).

Finally,

0 S <p(v) - ^(v - 0) S - Q'MQr.+x{vy

If (pi(v) is another distribution function with the same moments

mo, mi, m2, . . . m2ny
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we shall have also

0 S Tx{v) Kv 0) ^

and as a consequence,

(19) - ^(^)1 ^ xn(2;)

—a very important inequality. Here for brevity we use the notation

Xn(y) — 1

Qn+l^^)Qn{v) - Qn{v)Qn+M'

7. Application to Normal Distribution. An important particular

.case is that of a normal distribution characterized by the function

<p(x)

In this case it is easy to give an explicit expression of the polynomials

Qn{x). Let

Hn(pd) — 6'“
4^e-

dx^

Integrating by parts, one can prove that for Z ^ n

= 0.

Hence, one may conclude that Qn(x) differs from Hn{x) by a constant
factor. Let

'

Qn(x^ — CnHni.x').

To determine we may use the relation

Hn{x) = -2xHn-i(x) - 2{n - l)Hn-2 ix)

which can readily be established. Introducing polynomials Qn, this*

relation becomes

Hence,

Qn(x) = -2x-^Qn^^ix) ^ 2(n -
^n—l Cn—2

On 1

Cn-2 2n — 2^
On—l

Since Ho(x) = Qq(x) = 1, we have co = 1; also

ai

Pn = 0.
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whence Ci = — The knowledge of co and Ci together with the relation

C»-2
Ctj

2n — 2

allows determination of all members of the sequence C2 ,
cz, C4, . . .

The final expressions are as follows

;

Cam 2“ • 1 • 3 • 5 • •
• (2m - 1)

-1
2^+1 • 2 • 4 • 6 • •

• 2m

From the above relation between Hn(x), Hn-i(x), Hn-^iix) and owing to

the fact that Unix) is an even or odd polynomial, according as n is even or

odd, one finds

i?2m(0) =(-2)--l-3-5 • •
• (2m --1),

while another relation

= -2nHn-iix),

following from the definition of Hn{x), gives

HL-i(O) = (-2)- • 1 • 3 • 5 • •
• (2m - 1).

These preliminaries being established, we shall prove now that

^
CnC„+l(HUl(v)Hniv) -

attains its maximum for v = 0. Let

12(z;) = - H'(z;)i7n+i(t;).

Then, taking into account the differential equation for polynomials

Hn{v):

we find that

= 2vH'M - 2nHn(v)

On the other hand.

^ = 2yO - 2Hniv)Hn+i(v).

and denoting roots of the polynomial Hn+j(v) in general by

d Hn{v) _ ^ Hnii) 1

dv Hn+i(v) (v - ly
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Consequently

2 =
{V - iY

Again

and so

H„(i) C _-Hn+livy^— -"-CZn+lVv/ ^ vNo “ -.11 ) /.. j-\2’
dv i(t, - 1)2‘H;+i(5) (« - ?)^ n + l

Roots of the polynomial Hn+i(x) being symmetrically located with

respect to 0, we have:

I

\{v - --2 2v

and finally

do ^= ~-2z;^ p-
dv n +

(v + 0^ ey

1 I (V^ - ^2)2

Hence

^>0 if V < 0; 4“<0 if v > 0
dv dv

that is, 9.(v) attains its maximum for z; = OandxnW attains its maximum
for ?; == 0. Referring to the above expressions of C2mj C2m+i] i?2m(0),

ff2rn+i(0), we find that

X2m(0)

X27n41 (f^)

2-4-6 2m
3-5-7 - -

- (2m + 1)

2 - 4 - 6 • -
• 2m

3 • 5 - 7 - -
• (2m + 1)

In Appendix I, page 354, we find the inequality

2-4-6 2m ]

whence

/
1 • 3 - 5 * -

* (2m — 1) \/4m + 2 2

2-4-6 -

3-5-7
*

- 2m
(2m + 1)

< I

^
\4m + 2

X»W ^ Xn(0) <

Thus, in all cases
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whence, by virtue of inequality (19),

1
^ 1 (1^)

- <p{v)\ <

Thus any distribution function (pi{v) with the moments

1 • 3 • 5 • •
• (2A; - 1)

mo = 1, m2A-i = 0, m^k

corresponding to

differs from ip{v) by less than

2k {k S n)

4.

TT

2n

Since this quantity tends to 0 when n increases indefinitely, we have the

following theorem proved for the first time by Tshebysheff:

The system of infinitely many equations

^ to f*
to ^ to

d<p(x) =1; = 0;
J — to t/ — 00 J — «

x‘‘’Mcp{x) =

1 • 3 • 5 • •
• (2i: - 1)

2’^

fc = 1, 2, 3,

uniquely determines a never decreasing function <p{x) such that </>{—«}) =0;
namely,

<p{x)
__ 1 p
V^J- CO

8. Tshebysheff-Markoff’s Fundamental Theorem. When a mass = 1

is distributed according to the law characterized by a function F{x, X)

depending upon a parameter X, we say that the distribution is variable.

Notwithstanding the variability of distribution, it may happen that its

moments remain constant. If they are equal to moments of normal

distribution with density

\/t

then by the preceding theorem we have rigorously

Fix, X) = . r e-e~^'‘du

no matter what X is.
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Generally moments of a variable distribution are themselves variable.

Suppose that each one of them, when X tends to a certain limit (for

instance co
), tends to the corresponding moment of normal distribution.

One can foresee that under such circumstances Fix, X) will tend to

<p{x)

In fact, the following fundamental theorem holds:

Fundamental Theorem. If, for a variable distribution characterized

by the function F(x, X),

lim r x^dF{x, X) = T e'^^Vdx; X-
J-cc

for any fixed fc == 0, 1, 2, 3, . . . ,
then

lim F{v, X) = r e^^^dx; X —

>

V^J~ CO

uniformly in v.

Proof. Let

mo, mi, m2, . . .

be 2?^ + 1 moments corresponding to a normal distribution. They
allow formation of the polynomials

Qo(x), Qi{x), . . . Qn{x) and Q{x)

and the function designated in Sec. 6 by ^(x). Similar entities cor-

responding to the variable distribution will be specified by an asterisk.

Since

m% —^Mh as X CO

and since An > 0, we shall have

> 0

for sufficiently large X. Then F (a;, X) will have not less than n + 1

points of increase and the whole theory can be applied to variable dis-

tribution. In particular, we shall have

0 ^ <p{v) — ^|/{v — 0) ^ Xn(t^)

(20)

QSF{v, X) - - 0) ^ X*W.

Now Qt(a;)(s = 0, 1, 2, . . . n) and Q*(z) depend rationally upon
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m%k= 0, 1, 2, . . . 2n); hence, without any difficulty one can see that

Q*(^) -^Qsix); s = 0, 1, 2, . . . n
Q*(x) Qix)

as X 00
;
whence,

XnW Xn{v),

Again

,
^*(1; — 0)

^ \p(v — 0)

as X 00 . A few explanations are necessary to prove this. At first let

Qn{v) 9^ 0. Then the polynomial Q(x) will have n + 1 roots

< * * * <

Since the roots of an algebraic equation vary continuously with its

coefficients, it is evident that for sufficiently large X the equation

Q*(a;) = 0

will have + 1 roots:

?! < ?! < ?1< • •
• < ?n%l

and will tend to as X —> co , In this case, it is evident that — 0)

will tend to \l/{v — 0). If Qn(v) = 0, it may happen that ?! or tends

respectively to — 00 or •+ 00 as X —> 00
,
while the other roots tend to the

roots

Xif X2) • • • Xfi

of the equation

Qn(x) = 0.

But the terms in — 0) corresponding to infinitely increasing roots

tend to 0, and again

•— 0)
—

»

\l/(v — 0).

Now

Consequently, given an arbitrary positive number e, we can select n so

large as to have

< €.
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Having selected n in this manner, we shall keep it fixed. Then by the

preceding remarks a number L can be found so that

\yl^{v - 0)
- - 0)1 < €

for X > L. Combining this with inequalities (20), we find

[jPC?;, X) - <p{v)\ < 3e

for X > L. And this proves the convergence of F{v, X) to <p{v) for a

fixed arbitrary v. To show that the equation

1 n
lim F{v, X) = e~^^dx

holds uniformly for a variable v we can follow a very simple reasoning due

to Polya. Since (p{— <=^) = 0, ^(+co) = 1 and <p{x) is an increasing

function, one can determine two numbers ao and an so that

(p(x) S <p(ao) <1 for X ^ ao

1 — (p{x) g 1 — (p(an) < ^
for X > an^

Next, because (p{x) is a continuous function, the interval (ao, a^) can be

subdivided into partial intervals by inserting between ao and an points

< U2 < * *
* < an^i so that

0 < <p{ak+i) — (p{aic) <
I

for = 0, 1, 2, . . . — 1. By the preceding result, for all sufficiently

large X

F{ao, X) < |; 1 - F(a„, X) < ^
(U

and

\F(,ak, X) - <p{ak)\ < |; fc = 1, 2, . . . re - 1.

Now consider the interval (— 00
, ao). Here for v S ao

0 ^ F{v, \)<t. 0 < ,p{v) < i

and

\Fiv, X) — < €.
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For V belonging to the interval (a^, +^)

0^1- Fiv, x)< I 0 < 1 < y

whence again

Finally, let

Then .

1F(?;, X) - ip{v)\ < €.

ak ^ V < ajc+i (A) = 0, 1, 2, . . . n 1).

F{Vj X) — (p(v) ^ F(akj X) — <p(ak+i) =
— [F{ajcj X) “ ipicik)] + Wicik) ~ ^(a^fc+i)]

Fiv, X) - <p(v) ^ F{ak+i, X) - <p(ak) =
= [F(afc+i, X) ““ <^(a/c+i)] + [^(aA:4-i) — <p(ak)]^

But

F(afc, X) - <p(ak) > “ - <p{cik+i) >

F(afc+i, X) - <p{aic+i) < <^(a;c+i) - <p{ak) <
2̂

'

whence

— € < F{v, X) — (p{v) < e.

Thus, given e, there exists a number L{e) depending upon e alone and

such that

|F(y, X) — <p(v)\ < €

for \ > L(e) no matter what value is attributed to v.

The fundamental theorem with reference to probability can be stated

as follows:

Let Sn be a stochastic variable depending upon a variable positive integer

n. If the mathematical expectation E(s^) for any fixed fc = 1, 2, 3, . . .

tends, as n increases indefinitely, to the corresponding expectation

1
E{x^) = —j=z I xh^^^dx

V^rJ - 00

of a normally distributed variable, then the probability of the inequality

Sn < V

tends to the limit

-X p e-^^dx
VttJ-co

and that uniformly in v.
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In very many cases it is much easier to make sure that the conditions

of this theorem are fulfilled and then, in one stroke, to pass to the limit

theorem for probability, than to attack the problem directly.

Application to Sums of Independent Variables

9. Let ;Si, ;S 3 ,
. . . be independent variables whose number can be

increased indefinitely. Without losing anything in generality, we may
suppose from the beginning

=0; /c = 1, 2, 3, . . . .

We assume the existence of

E{zl) = 6,

for all = i, 2, 3, . . . . Also, we assume for some positive 5 the

existence of absolute moments

= 1, 2, 3, . ...

Liapounoff’s theorem, with which we dealt at length in Chap. XIV,

states that the probability of the inequality

^1+^2 + +

where

\/2B„

Bn = +

<t,

+ hn

tends uniformly to the limit

-f
V^J-«

as n 00
,
provided

^( 2+5
) + ^( 2+5

) + (2+5)

Un

0.

Liapounoff^s result in regard to generality of conditions surpassed by
far what had been established before by Tshebysheff and Markoff, whose
proofs were based on the fundamental result derived in the preceding sec-

tion, Since Liapounoff’s conditions do not require the existence of

moments in an infinite number, it seemed that the method of moments
was not powerful enough to establish the limit theorem in such a general

form. Nevertheless, by resorting to an ingenious artifice, of which we
made use in Chap. X, Sec. 8, Markoff finally succeeded in proving the

limit theorem by the method of moments to the same degree of generality

as did Liapounoff.
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Markoff’s artifice consists in associating with the variable Zk two new
variables Xh and defined as follows:

Let iV* be a positive number which in the course of proof will be
selected so as to tend to infinity together with n. Then

Xh = Zky Vk = 0 if \zk\ g N
Xk =0, yk = Zk if \Z]l > N,

Evidently Zk, Xk, yk are connected by the relation

Zi = Xk + yk

whence

(21) E{xk) + E{yk) = 0.

Moreover

Eixl) + E(yl) = Eizl) = h

(22)

E\xk\^^^ + E\yk\^^^ = E\zk\^^^ =

as one can see immediately from the definition of Xk and yk-

Since Xk is bounded; mathematical expectations

Eixi)

exist for all integer exponents Z = 1, 2, 3, . . . andforifc = 1, 2, 3, . . . .

In the following we shall use the notations

l^(4)l = 4"; z == 1
,
2

,
3

,
. . .

^(2) + ^(2) + . .
. + ^(2) J5/

^(2+5) + ^(2+5) + . .
. + ;,(2+5) =

Not to obscure the essential steps of the reasoning we shall first

establish a few preliminary results.

Lemma 1. Let qk represent the probability that yk 0; then

gi + ^?2 + ’ *
• + ^

Proof. Let ipkh^ be the distribution function of 2*. Since yk 9^ 0

only if \zk\ > N, the probability g* is not greater than

/
—N /• oo

_^d<phix) + d<pi(x).

On the other hand,
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But

whence

g/. g J__ ^
d<pjc(x) + dipi,{x) ^

The inequality to be proved follows immediately.

Lemma 2. The following inequality holds:

Proof. From

which is a consequence of the second equation (22) it follows that

The first equation (22)

gives

E{yf) g

cr + Eiyl) = hk

bk ^ ^ bk m
Taking the sum for fc = 1, 2, 3, . . . n, we get

Cn

whence

1 > :?2 > 1 .- Bn = BnN^

Lemma 3. For e ^ 3,

cM + + . 4, cU)
^

6

Bl

<(^
= \Bn)

e— 2

2 •

Proof. This inequality follows immediately from the evident

inequalities

4^^ ^ E\xj,Y ^ N^^E{xl) ^
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Lemma 4. The following inequality holds

Cj" + + • •
• + cy ^ / (7„ Y

Bi = VA^^+7

Proof. Since

E{xk) + E(yk) = 0
,

we have

cP = 1^(0;,)
1
= \Eiyk)\ ^ E\ykl

On the other hand, by virtue of Schwarz^s inequality

[E\yi\ + E\y2\ + * *
* + E\yn\Y ^

n

^ toi + 5^2 + • *
• + Qn)^'^E(y^) ^

whence the statement follows immediately.

If the variable integer N should be subject to the requirements that

both the ratios

Cn
and

^2
Bn

should tend to 0 when n increases indefinitely, then the preceding lemmas

would give three important corollaries. But before stating these

corollaries we must ascertain the possibility of selecting N as required.

It sufiices to take

Then

N =

Cn

Bn
0

by virtue of Liapounoff^s condition.

Also

will tend to 0. By selecting N in this manner we can state the following

corollaries

:

Corollary 1. The sum

‘ + S'n

tends to 0 as co

.
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Corollary 2. The raiio

ik
Bn

tends to 1.

Corollary 3. The ratio

£

tends to 0 for all 'positive integer exponents e except 6=2.
10. Let Fnif) and represent, respectively, the probabilities of the

inequalities

+ 2:2 + * *
* + ^ ^

OOl + Xt Xn ^ t

vm
By repeating the reasoning developed in Chap. X, Sec. 8, we find that

\Fn{t) — ^ + * *
* + S'n.

Hence,

lim {Fn(t) — ct>n{t)) =0 as 00

by Corollary 1. It suffices therefore to show

071 (0 r e--^dx
V7rJ_«

as n 00,

and that can be done by the method of moments. By the polynomial

theorem

/xi + X2 + ' ’
• + XnY'^ ^ ^ ml Sg,^, . . . X

V vm: ) 2jam • • • X!
I

where the summation extends over all systems of positive integers

oi ^ ^ X satisfying the condition

a + + • *
• + X = m

and Sa.0, . . . X denotes a symmetrical function of letters Xi^ X 2 ,
. . . Xn

determined by one of its terms

. . . 4
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if I represents the number of integers a, /3, ... X. Since variables

XifXi,, . . . Xn are independent, we have

^/xx + Xj + • • + a:A ”» _ m! Ga,^, . . . x

V ) 2ia\^\ • •
• X!

where Oa,^. ... x is obtained by replacing powers of variables by mathe-

matical expectations of these powers. It is almost evident that

...^l < c<f + + • •
- 4^

_
ef + cf + • •

• + cy
— a &

Br? BJ BJ
C(X) +4X)+ . .

. +c^
X

BJ

Now if not all the exponents a, jS, . . . X are — 2 (which is possible

only when m is even), by virtue of Corollary 3 the right member as well as

Ga,B, . . . X

m

tends to 0. Hence

E[
'xx -b 0:2 4-

if m is odd.

But for even m we have

roo\ + ^2 4" ’ *
* + G2 . 2 ,

• • • 2
, n4 vm— ) -F—Dn

Let us consider now (m being even)

m 2?

/ci» + c'2
» + • • • -

1- ^ r
\B„) ox

. .
. (jQ

Br?

where summation extends over all systems of positive integers

X ^ /X ^ ^ CO

satisfying the condition

Air 1
^

^
X + M+ * *

* 4'C*>=7r
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and „ is a symmetric function of df’, c'j®, . . . determined by
its term

{d^)Kc?Y . . .

I being the number of subscripts X, /i, . . . w. Apparently

gx,., .

.

< + • •
• +

. . .

B 2Un

Besides

and

{d^Y + {cfY +••.+ (e)-
5“

cf' S (4®)‘ ^

{d?Y + icfY + • • •

-r (e)‘
Bi,

if e > 1. Thus

gx,>.,,
m

BJ
0

if not all subscripts n, ... oi are equal to 1. It follows that

But by Corollary 2

and evidently Hi,i,

Br,

1 = ^2,2, . • . 2. Hence

j

G2j2j • * • 2
^

2 r
B 2
jJn

and this in connection with (23) shows that for an even m

El
^xi + a;2 + ml

Finally, no matter whether the exponent m is odd or even, we have

(Xx X2 *
•

* + Xi!S
limir^- «y ^ _i_ r "

/ VirJ- -

x”‘e~’^^dx.
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Tshebysheff-MarkofE^s fundamental theorem can be applied directly

and leads to the result:

lim f e-^^dx
V^rJ- 00

uniformly in t. On the other hand, as has been established before,

lim [Fn{t) - ^,,(0] = 0

uniformly in t. Hence, finally

lim Fn{t) == f e-^'^dx

V^J-oo

uniformly in t.

And this is the fundamental limit theorem with Liapounoff’s condi-

tions now proved by the method of moments. This proof, due to

Markoff, is simple enough and of high elegance. However, preliminary

considerations which underlie the proof of the fundamental theorem,

though simple and elegant also, are rather long. Nevertheless, we must

bear in mind that they are not only useful in connection with the theory

of probability, but they have great importance in other fields of analysis.
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ON A GAUSSIAN PROBLEM

1. In a letter to Laplace dated January 30, 1812/ Gauss mentions a

difficult problem in probability for which he could not find a perfectly

satisfactory solution. We quote from his letter:

Je me rappelle pourtaat d’un probleme curieux duquel je me suis occupd il y
a 12 ans, mais lequel je n’ai pas rdussi alors k resoudre k ma satisfaction. Peut-

^tre daignerez-vous en occuper quelques moments: dans ce cas je suis sur que vous

trouverez une solution plus complete. La void: Soit M une quantity inconnue

entre les limites 0 et 1 pour laquelle toutes les valeurs sont ou dgalement probables

ou plus ou moins selon une loi donn^e: qu’on la suppose convertie en une fraction

continue

Quelle est la probability qu^en s’arretant dans le dyveloppement k un terme fini

^Cn) la fraction suivante

1
1

soit entre les limites 0 et a;? Je la designe par F(n, x) et j’ai en supposant toutes

les valeurs dgalement probables

P(0, x) — X.

P{1, x) est une fonction transcendante dependant de la function

1+1+1+ +i
que Euler nomme inexplicable et sur laquelle je viens de donner plusieurs re-

cherclies dans un rndmoire presents k notre Society des Sciences qui sera bientdt

imprime. Mais pour le cas ou n est plus grand, la valeur exacte de P(n, x) semble

intraitable. Cependant j’ai trouve par des raisonnements tr^s simples que pour

n infinie

P(n, x) —
log (1 + x)

log 2

1 Gauss^ Werke, X, 1, p, 371.

396
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Mais les efforts que j^ai fait lors de mes recherches pour assignor

P{n, x) - log (1 + x)

log 2

pour une valeur tr^s grande de n, mais pas infinie, ont 6t6 infructueux.

The problem itself and the main difficulty in its solution are clearly

indicated in this passage. The problem is difficult indeed, and no
satisfactory solution was offered before 1928, when Professor R. 0.

Kuzmin succeeded in solving it in a very remarkable and elegant way.

2. Aiial3rtical Expression for Pn{x). We shall use the notation

Pn{x) for the- probability which Gauss designated by P(n, x). The first

question that presents itself is how to express Pn{x) in a proper analytical

form. Let ^2 ,
. . . Vn, x) be an interval whose end points are

represented by two continued fractions:

" + 5 +
and

vi + n +
+ + :

with positive integer incomplete quotients vi, ^ 2 ,
. • • while x is a

positive number ^1. Two such intervals corresponding to two different

systems of integers vi, . . . Vn and . v!^ do not overlap;

that is, do not have common inner points. For, if they had a common
inner point represented by an irrational number N (which we can always

suppose), we should have for some positive x' < 1 and x" < 1

+ X"‘

But that is impossible unless = vi, v'^ = v^, . . . v'„ == v„.

A numberM being selected at random between 0 and 1 and converted

into a continued fraction

N =-,l
^^+77 d.Vi +

+
X'

Vi +
• + 1

V. + k

if the quantity % turns out to be contained between 0 and a: < 1, M must

belong to one (and only one) of the intervals v^, . . . d„, x) cor-

responding to one of all the possible systems of n positive integers

Vi, Vi, . . . Vn- Since M has a uniform distribution of probability and
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since the length of the interval 5{vi, Vi, . . . Vn, x) is

1 1

(- 1 )’ Vl +
Vi +

Vl +
Vi +

+ +
Vn X Vn

the required probability Pn(x) will be expressed by the sum

'i _ i
+_1 + J;

W2 + •
1

Vi -\-

• +

Pn{x) =

Vl,V2, . . , Vn

+
Vn + X ' Vn]

extended over all systems of positive integers vi, Vi, . . . Vn. In general

let

Pi 1 \
Qi Vl +

(f = 1, 2, . . . w)

Vi +

be a convergent to the continued fraction

1 .

+
V2 +

+

Then the above expression for Pn(x) can be exhibited in a more convenient

form:

Pn -b XPn-1 _ ^
Qn "f" xQn—1 Qn_

> Vn

By the very definition of Pn{x) we must have Pn(l) = 1; hence the

important relation

® 2q„(Q„ + Q„_0
=

This result can also be established directly by resorting to the original

expression of Pn(l) and performing summation first with respect to vi,

then with respect to ^ 2 ,
etc.

Relation (2) can be interpreted as follows: Let d in general be the

length of an interval d{vi, v^, . . . 1). Then

D5 = 1

summation being extended over the (enumerable) set of intervals 5.

(1) Pn{x) = 2



APPENDIX III 399

3. The Derivative of Pn{x). In attempting to show that Pn{x)
tends uniformly to a limit function as n co it is easier to begin with its

derivative Pn{x). Series

1

obtained by formal derivation of (1) is uniformly convergent in the

interval (0, 1). For

Qn > Qn "b Qin—1

whence

and the series

1 2

{Qn + xQn-l)^ QniQn + Qw-l)

^Qn(Qn + Qn-l)

is convergent. Hence

dPn{x)

dx

Since

we have

Pn{x) -
2(Q„ +a:Q„_x)2*

Qin “ ^nQn—l “I” Qn—2

Vnix) = 2̂ / 1 {Vn + XY

and, performing summation with respect to vi, , , , Vn-i for constant

Vn

1

^ / 1
U,.., . . . vn^\Qn-i + j

V

Pn(x) -
+

r»~l
+ xy

whence
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or else

(3) Vn{x) - + a;)(r +
® = 1

—an important recurrence relation which permits determining com-

pletely the sequence of functions

. . .

starting with po(x) == 1. ^ ^

4. Discussion of a More General Recurrence Relation. In discussing

relation (3) the fact that ^t)o(x) = 1 is of no consequence. We may start

with any function /o (a;) subject to some natural limitations, and form a

sequence

. . .

by means of the recurrence relation

V = 1

The following properties of fnix) follow easily from this relation:

a. If

Mx) =
1 +a:

then

».i.2,3, ...

For

00

fi(x) =
«2(t, + a:

“
v + x + ^ ^ TT^

0 = 1

whence the general statement follows immediately.

b. If

^ Mx) ^
1 + a; 1 +a:

then

m ^ f f \ ^ M
^ fn(x) ^

1 X 1 + »



APPENDIX 111 401

Follows from (a) and equation (4) itself.

As a corollary we have: Let Mn and be the precise upper and
lower bounds of

(1 + x)Ux) (n = 0, 1, 2, . . . )

in the interval 0 ^ a; ^ 1. Then

Afo ^ Ml ^ lf2 ^ • • •

mo ^ mi ^ m2 ^ *

c. We'h^ve

/.(*)& = + »)>
"

i " i
d. The following relations can easily be established by mathematical

induction:

_ ^JPn+xPn-^\ 1

iQn 4" xQn-i)^

1
SUX) -

f
(Pn + xPn-1

(Q/i + xQn-iy

)
1

fznix) - 2j^2n\^Q^
f {Qn + xQn-l)

'

Let us suppose now that the function foix) defined in the interval

0 g a; g 1

possesses a derivative everywhere in this interval and let jUo be an upper

bound of \fo(x)\ while M is an upper bound of 1(1 + Then by

property (6)

l/.(x)l ^ M; l/2.(x)l ^ M; \fzn(x)\ ^ M,

The function fn{x) represented by the series

U(X) = ^foiu)^Q^

where u stands for

Pn + xPn^l

Qn Hr ^Qn-l
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has a derivative; for the series obtained by a formal differentiation

("“!)” t^.\ Qn-lm =
'{Qn + + xQ„.ir

is uniformly convergent and represents /'(rr). Now

Qn—l

and

Hence

(Qn + xQn-lV ^ Ql

f)ft ^ QniQn + Qn-l)
Q^n > 2

Qn-l
< + Q„_i)(Qn + xQn-l)^\

fay virtue of (2). On the other hand, the inequality

QniQn + Qn-l) = (VnQn-l + Qn-2)[(Vn + l)Q7i-l + Qn-2] >
> 2Qn-l(Qn-l + Qn-2)

holding for n ^ 2 together with an evident inequality

Qi(Qi + Qo) = 2

shows that

QniQn + Qn-l) > 2" (u ^ 2).

Thus

(Q„ + xQr^i)^ > Ql -Ql > >

> 2’‘-2Q„(Q„ + Q^i)

and consequently

(- 1)”

(Qn + xQn—^)^\
< IJ'O

2n-2

Hence, we may conclude that

== 9^ +

is an upper bound of \fn(x)\. Similarly, starting with the second equation

in (d), we find that
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is an upper bound of |/2„(a:)|, and so forth. In general, the recurrence

relation

Mft - + 4M (k = 1, 2, 3,

determines upper bounds of

\fLix)\, \fL(x)\,—
It is easy .to see that in general

. AO
,

4ilf
^ Ok(n—^) I

'

2Hn-2) » I __ 2-(«-2)

SO that for sufficiently large n

jih < 5M.

5. Main Inequalities. Let

mo
<pa(x) =/o(a;)

1 + X

Then

fnix) -^ = ^n(x) =

^ + Q„_,y

Since the intervals 5 defined at the end of Sec. 2 do not overlap and cover

completely the whole interval (0, 1), we may write:

I = <Po(x)dx = 2^£po(x)dx = + Q^,y

the latter part following from the mean value theorem and Ui being a

number contained within the interval 5. By subtraction we find

fn(x)
mo

I > g^[yo(^) - ^o(wi)]^l+X " - + Qn-l)

and, since both and Ui belong to the same interval d,

jLto + mo ^ jLto + mo

Qn(Qn + Qn-l)
>

2^

Mx) - me

1 + a:

- I >
/xo + mo

Consequently,
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and a fortiori

It follows that

U{x) > mo + 1 + OTo)

1 + a;

(5) mi ^ mo + Z — 2-”(aio + Wo).*
*

In a similar way, considering the function

Mx) = - h{x)

and setting

h = ifo^Mx)dx,

we shall have

, / N ^ Zl^o — Zi + 2~"(/xo + -^o)

j ^

whence

(6) Ml ^ Mo — Zi + 2“’’(/io + Mo).

Further, from (5) and (6)

Ml — mi ^ Mo — mo + 2-”+Kjlio + Mo) — I — h.

But

Z + Zi = I log 2 (Mo — mo) = (1 — fc)(Mo — mo); k < 0.66,

so that finally

Ml — mi < fc(Mo — mo) + 2-”+i(/io + Mo).

Starting with /„(x),

/

2,i(a;), . . . instead of /o(x), in a similar way we find

M2 — m2 < fc(Mi — mi) + 2-"+i()ui + Mi)
Ms — ms < fc(M2 — m2) + 2-"+i(/i2 + Ms)

Mn — rrin < fc(M„_i — m„_i) + 2-’*+i(m„_i + M„_i).

From these inequalities it follows that

Mn — m„ < (Mo - mo) A;™ + 2-”+i
[/loA;”-^ + + • •

. + 4.

+ MoZb”-! + MiA:’-^ -|_ . .
. 4.

Without losing anything in generality, we may suppose that /o(a;) is a
positive function. Then

* Mi, mi are used here with, the same meaning as Jkf„<, mn,- in Sec. 4.
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Mk ^ Mo, lik < 5Mo (fc = 1, 2, 3, . . . )

at least for sufficiently large n. Owing to these inequalities we shall have

(7) M„ - < (Mo - mo)fc’‘ +

This inequality shows that sequences

mo ^ mi ^ m2 ^ * * *

approach a common limit a. The following method can be used to find

the value of this limit. Let N be an arbitrary sufficiently large integer

and n the integer defined by

Then

S N < iri + 1)2,

and therefore

rrin

1 + x
^ fnn(x)

^ Mn
-TT~x

Vtn

1 + ^
^ fnix)

<• Mn
~

1 + X

The last inequality permits presenting /j^ (a:) thus:

(8) Mx) = + 0(M„ - m„);
|0l < 1,

whence

J^fN(x)dx = J^Mx)dx = a log 2 + e^{Mn — m^), \B'\ < 1,

and, because — rrin ultimately becomes as small as we please in

absolute value,

a log 2 = J^^Mx)dx,

Equation (8) shows clearly that the sequence of functions

Mx)Jiix),f2{x), . . .

defined by the recurrence relation (4) approaches uniformly the limit

function

a

1 + a;
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where

6. Solution of the Gaussian Problem. It sufSces to apply the preced-

ing considerations to the case /o(a;) = p^ix) = 1. In this case Mo = 2,

mo = 1, Mo = 0 ar^d

1

“ log 2

Consequently,

=
(1 4- a:) log 2

+ + (1 - • 2^-^’
^ ^

where n = [V^]- It suffices to integrate this expression between limits

0 and i < 1 to find

AsiV-

^^(0 = + (1 _ l)2
n-) ’

> 00

log (1 + 0
log 2

as stated by Gauss. Moreover,

log (1 + 01 ^ An ,

3 \
' \ ^ (1 - fc)2”-Vlog 2

for sufficiently large, but finite N.



Table of the Pbobability Intbgeal

1= —= IV 27rJo

z z z <t>{z) z

0.00 0 . 0000 0.65 0.2422 1.30 0.4032 1.96 0 . 4744
0.01 0 . 0040 0.66 0.2454 1.31 0.4049 1.96 0.4750
0.02 0 . 0080 0.67 0.2486 1.32 0.4066 1.97 0 . 4756
0.03 0.0120 0.68 0.2617 1.33 0.4082 1.98 0.4761
0.04 . 0.0160 0.69 0.2549 1.34 0.4099 1.99 0.4767
0.05 0.0199 0.70 0.2580 1.35 0.4115 2.00 0.4772
0.06 0 . 0239 0.71 0.2611 1.36 0.4131 2.02 0.4783
0.07 0 . 0279 0.72 0.2642 1.37 0.4147 2.04 0.4793
0.08 • 0.0319 0.73 0.2673 1.38 0.4162 2.06 0.4803
0.09 0 . 0359 0.74 0.2703 1.39 0.4177 2.08 0.4812
0.10 0.0398 0.75 0.2734 1.40 0.4192 2.10 0.4821
0.11 0 . 0438 0.76 0.2764 1.41 0.4207 2.12 0.4830
0.12 0 . 0478 0.77 0.2794 1.42 0.4222 2.14 0.4838
0.13 0.0517 0.78 0.2823 1.43 0.4236 2.16 0.4846
0.14 0 . 0557 0.79 0.2852 1.44 0.4251 2.18 0.4854
0.15 0.0596 0.80 0.2881 1.45 0.4265 2.20 0.4861
0.16 0.0636 0.81 0.2910 1.46 0.4279 2.22 0.4868
0.17 0.0675 0.82 0.2939 1.47 0.4292 2.24 0.4875
0.18 0.0714 0.83 0.2967 1.48 0.4306 2.26 0 . 4881
0.19 0 . 0753 0.84 0.2995 1.49 0.4319 2.28 0.4887
0.20 0.0793 0.85 0.3023 1.50 0.4332 2.30 0.4893
0.21 0 . 0832 0.86 0.3051 1.51 0.4345 2.32 0.4898
0.22 0.0871 0.87 0.3078 1.52 0.4357 2.34 0.4904
0.23 0.0910 0.88 0.3106 1.53 0.4370 2.36 0 . 4909
0.24 0 . 0948 0.89 0.3133 1.54 0.4382 2.38 0.4913
0.25 0 . 0987 0.90 0.3159 1.55 0.4394 2.40 0.4918
0.26 0 . 1026 0.91 0.3186 1.56 0.4406 2.42 0.4922
0.27 0.1064 0.92 0.3212 1.57 0.4418 2.44 0.4927
0.28 0.1103 0.93 0.3238 1.58 0.4429 2.46 0.4931
0.29 0.1141 0.94 0.3264 1.59 0.4441 2.48 0 . 4934
0.30 0.1179 0.95 0.3289 1.60 0.4452 2.50 0 . 4938
0.31 0.1217 0.96 0.3315 1.61 0.4463 2.52 0.4941
0.32 0.1255 0.97 0.3340 1.62 0.4474 2.54 0.4945
0.33 0.1293 0.98 0.3365 1.63 0.4484 2.56 0 . 4948
0.34 0.1331 0.99 0.3389 1.64 C .4495 2.58 0.4951
0.35 0.1368 1.00 0.3413 1.65 0.4505 2.60 0.4953
0.36 0 . 1406 1.01 0.3438 1.66 0.4515 2.62 0.4956
0.37 0.1443 1.02 0.3461 1.67 0.4525 2.64 0 . 4959
0.38 0.1480 1.03 0.3485 1.68 0.4535 2.66 0.4961
0.39 0.1517 1.04 0.3508 1.69 0.4545 2.68 0.4963
0.40 0 . 1654 1.05 0.3531 1.70 0.4554 2.70 0.4965
0.41 0.1591 1.06 0.3554 1.71 0.4564 2.72 0.4967
0.42 0. 1628 1.07 0.3577 1.72 0.4573 2.74 0.4969
0.43 0.1664 1.08 0.3599 1.73 0.4582 2.76 0.4971
0.44 0.1700 1.09 0.3621 1.74 0.4591 2.78 0.4973
0.45 0. 1736 1.10 0.3643 1.75 0.4599 2.80 0 . 4974
0.46 0. 1772 1.11 0.3665 1.76 0.4608 2.82 0.4976
0.47 0.1808 1.12 0.3686 1.77 0.4616 2.84 0 . 4977
0.48 0. 1844 1.13 0.3708 1.78 0.4625 2.86 0 . 4979
0.49 0. 1879 1.14 0.3729 1.79 0.4633 2.88 0 . 4980
0.60 0.1915 1.15 0.3749 1.80 0.4641 2.90 0.4981
0.51 0.1950 1.16 0.3770 1.81 1 0.4649 2.92 0 . 4982
0.52 0.1985 1.17 0.3790 1.82 0.4656 2.94 0 . 4984
0.53 0.2019 1.18 0.3810 1.83 0.4664 2.96 0.4985
0.54 0 . 2054 1.19 0.3830 1.84 0.4671 2.98 0.4986
0.65 0.2088 1.20 0.3849 1.85 0.4678 3.00 0 . 49865
0.56 0.2123 1.21 0.3869 1.86 0.4686 3.20 0.49931
0.57 0.2157 1.22 0.3888 1.87 0.4693 3.40 0 . 49966
0.68 0.2190 1.23 0.3907 1.88 0.4699 3.60 0.499841
0.69 0.2224 1.24 0.3925 1.89 0.4706 3.80 0 . 499928
0.60 0 . 2257 1.25 0.3944 1.90 0.4713 4.00 0 . 499968
0.61 0.2291 1.26 0.3962 1.91 0.4719 4.50 0.499997
0.62 0.2324 1.27 0.3980 1.92 0.4726 5.00 0 . 499997
0.63 0.2357 1.28 0.3997 1.93 0.4732
0.64 0.2389 1.29 0.4015 1.94 0.4738
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INDEX

A

Arrangements, 18

B

Bayes^ formula (theorem), 61

Bernoulli criterion, 5

Bernoulli theorem, 96

Bernoulli trials, 45

Bernstein, S., inequality, 205

Bertrand’s paradox, 251

Buffon’s needle problem, 113, 251

Barbier’s solution of, 253

C

Cantelh’s theorem, 101

Cauchy’s distribution, 243, 275

Characteristic function, composition of,

275

of distribution, 240, 264

Coefficient, correlation, 339

divergence, 212, 214, 216

Combinations, 18

Compound probabihty, theorem of, 31

Continued fractions, 358, 361, 396

Markoff’s method of, 52

Continuous variables, 235

Correlation, normal {see Normal cor-

relation)

Correlation coefl&cient, distribution of,

339

D

Difference equations, ordinary, 75, 78

partial, 84

Dispersion, definition, 172

of sums, 173

Distribution, Cauchy's, 243, 275

characteristic function of, 264

of correlation coefficient, 339

Distribution, determination of, 271

equivalent point, 369

general concept of, 263

normal (Gaussian), 243

Poisson’s, 279

‘^Student’s,” 339

Distribution function of probability,

239, 263

Divergence coefficient, empirical, 212

Lexis’ case, 214

Poisson’s case, 214

theoretical, 212

Tschuprow’s theorem, 216

E

Elementary errors, hypothesis of, 296

Ellipses of equal probability, 311, 328

Estimation of error term, 295

Euler’s summation formula, 177, 201,

303, 347

Events, compound, 29

contingent, 3

dependent, 33

equally likely, 4, 5, 7
exhaustive, 6

future, 65

incompatible, 37

independent, 32, 33

mutually exclusive, 6, 27

opposite, 29

Expectation, mathematical, 161

of a product, 171

of a sum, 165

P

Factorials, 349

Fourier theorem, 241

French lottery, 19, 108

Frequency, 96

Fundamental lemma (see Limit theorem)

Fundamental theorem (see Tshebysheff-

Markoff theorem)
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G

Gaussian distribution, 243

Gaussian problem, 396

Generating function of probabilities,

47, 78, 85, 89, 93> 94

H

Hermite polynomials, 72

Hypothesis of elementary errors, 296

I

Independence, definition of, 32, 33

K

Khintchine {see Law of large numbers)

Kolmogoroff {see Law of large numbers;

Strong law of large numbers)

L

Lagrange^s series, 84, 150

Laplace-Liapounoff {see Limit theorem)

Laplace’s problem, 255

Laurent’s series, 87, 148

Law of large numbers, generalization

by Markoff, 191

for identical variables (Khintchine),

195

Kolmogoroff’s lemma, 201

theorem, 185

Tshebysheff’s lemma, 182

Law of repeated logarithm, 204

Law of succession, 69

Lexis’ case, 214

Liapounoff condition {see Limit theorem)

Liapounoff inequality, 265

Limit theorem, Bernoullian case, 131

for sums of independent vectors, 318,

323, 325, 326

fundamental lemma, 284

Laplace-Liapounoff, 284

Line of regression, 314

Lottery, French {see French lottery)

M

Marbe’s problem, 231

Markoff’s theorem, infinite dispersion,

191

Markoff’s theorem, for simple chains, 301

Markoff-Tshebysheff theorem {see

Tshebysheff-Markoff theorem)

Mathematical expectation, definition of,

161

of a product, 171

of a sum, 165

Mathematical probability, definition of,

6 *

Moments, absolute, 240, 264

inequalities for, 264

method of (Markoff’s), 356#.

N

Normal correlation, 313

origin of, 327

Normal distribution, Gaussian, 243

two-dimensional, 308

P

Pearson’s '‘x^-test, ” 327
Permutations, 18

Point, of continuity, 261, 356

of increase, 262, 356

Poisson series, 182, 293

Poisson’s case, 214

Poisson’s distribution, 279

Poisson’s formula, 137

Poisson’s theorem, 208, 294
Polynomials, Hermite {see Hermite)

Probability, approximate evaluation of,

by Markoff’s method, 52

compound, 29, 31

conditional, 33

definition (classical) of, 6

total, 27, 28

Probability integral, 128

table of, 407

K

Relative frequency, 96

Runs, problem of, 77

S

Simple chains, 74, 223, 297

Markoff’s theorem for, SQl

Standard deviation, 173
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Stieltjes’ integrals, 261

Stirling’s formula, 349

Stochastic variables, 161

Strong law of large numbers (Kolmo-
goroff), 202

‘^Student’s” distribution, 339

T

Table of probability integral, 407

Tests of significance, 331

Total probability, theorem of, 27, 28

Trials, dependent, independent, repeated,

44, 45

Tschuprow (see Divergence coefficient)

Tshebysheff-Markoff theorem, funda-

mental, 304, 384

application, 388

Tshebysheff’s inequalities, 373

Tshebysheff’s inequality, 204

Tshebysheff’s lemma, 182

Tshebysheff’s problem, 199

V

Variables, continuous, 235

independent, 171

stochastic, 161

Vectors (see Limit theorem)


